A Very Large-Scale Neighborhood Search Algorithm for the Multi-Resource Generalized Assignment Problem

Mutsunori Yagiura^{*} Shinji Iwasaki[†] Toshihide Ibaraki^{*}

*Graduate School of Informatics, Kyoto University Kyoto 606-8501, Japan {yagiura,ibaraki}@i.kyoto-u.ac.jp

[†]Web Service Group, NTT Data Corporation Kayabacho Tower Bldg., 21-2, Shinkawa 1-Chome, Chuo-Ku, Tokyo 104-0033, Japan iwasakis@nttdata.co.jp

1 Introduction

We propose a metaheuristic algorithm for the multi-resource generalized assignment problem (MRGAP) [5]. MRGAP is a generalization of the generalized assignment problem (GAP) [8, 10, 11], which is one of the representative combinatorial optimization problems known to be NP-hard. To our knowledge, not much has been done for MRGAP after the work of Gavish and Pirkul [5] in spite of its practical importance, while many metaheuristic algorithms have been proposed for GAP [3, 4, 7, 10, 11].

Our algorithm is based on tabu search, and features a very large-scale neighborhood search, which is a mechanism of conducting the search with complex and powerful moves, where the resulting neighborhood is efficiently searched via the improvement graph [1, 2]. We also incorporate an automatic mechanism for adjusting search parameters, to maintain a balance between visits to feasible and infeasible regions.

We conducted computational experiments on benchmark instances called types C, D and E, and compared the proposed method with other existing algorithms. The results show that our algorithm is effective, especially for types D and E instances, which are known to be quite difficult.

2 Multi-Resource Generalized Assignment Problem

Given n jobs $J = \{1, 2, ..., n\}$ and m agents $I = \{1, 2, ..., m\}$, we undertake to determine a minimum cost assignment subject to assigning each job to exactly one agent and satisfying resource constraints for each agent, where s resources $K = \{1, 2, ..., s\}$ are considered. Assigning job j to agent i incurs a cost of c_{ij} and consumes an amount a_{ijk} of resource for each

 $k \in K$, whereas the total amount of the resource k available at agent i is b_{ik} . An assignment is a mapping $\sigma: J \to I$, where $\sigma(j) = i$ means that job j is assigned to agent i. Then the multi-resource generalized assignment problem (MRGAP) is formulated as follows:

minimize
$$cost(\sigma) = \sum_{\substack{j \in J \\ \sigma(j)=i}} c_{\sigma(j),j}$$

subject to $\sum_{\substack{j \in J \\ \sigma(j)=i}} a_{ijk} \le b_{ik}, \quad \forall i \in I \text{ and } \forall k \in K.$ (1)

MRGAP is known to be NP-hard, and the (supposedly) simpler problem of judging the existence of a feasible solution for GAP (i.e., MRGAP with s = 1) is NP-complete, since the partition problem can be reduced to MRGAP with m = 2 and s = 1.

3 Algorithm

Our algorithm, called TS-CS (tabu search with chained shift neighborhood), is an extension of local search. Local search starts from an initial solution σ and repeatedly replaces σ with a better solution in its *neighborhood* $N(\sigma)$ until no better solution is found in $N(\sigma)$. The resulting solution σ is *locally optimal* in the sense that no better solution exists in its neighborhood. Shift and swap neighborhoods N_{shift} and N_{swap} are usually used in local search methods for GAP, where $N_{\text{shift}}(\sigma) = \{\sigma' \mid \sigma' \text{ is obtained from } \sigma \text{ by changing the assignment of one job}\}$, and $N_{\text{swap}}(\sigma) = \{\sigma' \mid \sigma' \text{ is obtained from } \sigma \text{ by exchanging the assignments of two jobs}\}$. In addition to these standard neighborhoods, our algorithm uses a chained shift neighborhood, which consists of solutions obtainable by certain sequences of shift moves. The chained shift neighborhood $N_{\text{chain}}(\sigma)$ is the set of solutions σ' obtainable from σ by shifting l (l = 2, 3, ..., n) jobs $j_1, j_2, ..., j_l$ simultaneously, in such a way that satisfies

$$\sigma'(j_r) = \sigma(j_{r-1}), \quad r = 2, 3, \dots, l$$

$$\sigma'(j_1) = \sigma(j_l).$$

In other words, for r = 2, 3, ..., l, job j_r is shifted from agent $\sigma(j_r)$ to agent $\sigma(j_{r-1})$ after ejecting job j_{r-1} . This is based on the idea of ejection chains by Glover [6]. Since the size of such a neighborhood can become exponential, we carefully limit its size by utilizing improvement graphs [1, 2]. Since $|N_{\text{shift}}| \leq |N_{\text{swap}}| \leq |N_{\text{chain}}|$ holds, N_{swap} is searched only if N_{shift} does not contain an improving solution, and N_{chain} is searched only if $N_{\text{shift}} \cup N_{\text{swap}}$ does not contain an improving solution unless otherwise stated.

When the search visits the infeasible region, we evaluate the solutions by an objective function penalized by infeasibility:

$$pcost(\sigma) = cost(\sigma) + \sum_{\substack{i \in I \\ k \in K}} \alpha_{ik} p_{ik}(\sigma),$$
(2)

where $p_{ik}(\sigma) = \max\left\{0, \sum_{j \in J, \sigma(j)=i} a_{ijk} - b_{ik}\right\}$. The parameters α_{ik} (> 0) are adaptively controlled during the search by using an algorithm similar to the method in [10].

Whenever the local search stops at a locally optimal solution σ_{lopt} , it resumes from an initial solution generated by the following rule. We keep a solution σ_{seed} , which is initially

generated randomly, and is replaced with σ_{lopt} if $pcost(\sigma_{\text{lopt}}) \leq pcost(\sigma_{\text{seed}})$ holds (the most recent values for α_{ik} are used in pcost). Then we choose as the initial solution the solution in $N_{\text{shift}}(\sigma_{\text{seed}}) \setminus T$ with the smallest pcost, where T is the set of solutions already generated with shift moves from the current σ_{seed} . Then the local search starts from the search in N_{swap} , i.e., the search in N_{shift} is forbidden until an improved solution is found. This strategy is confirmed to be effective to avoid cycling of short period [10].

4 Computational Results

We compared the proposed algorithm TS-CS with the following three algorithms: (1) tabu search without chained shift neighborhood (denoted TS-noCS), (2) a general problem solver for the weighted constraint satisfaction problem proposed in [9] (denoted TS-WCSP), and (3) a commercial exact solver CPLEX 6.5 (denoted CPLEX). Note that TS-noCS is the same as TS-CS except that it does not use the chained shift neighborhood. All the algorithms were coded in C and run on a workstation Sun Ultra 2 Model 2300 (two UltraSPARC II 300MHz processors with 1 GB memory), where the computation was executed on a single processor.

Test instances were generated randomly by using benchmark instances for GAP. (We use GAP instances for s = 1.) There are five types of benchmark instances of GAP called types A, B, C, D and E [3, 7]. Out of these, we use three types C, D and E, since the other two are too easy to see differences among the tested algorithms. Types D and E are somewhat harder than type C, since c_{ij} and a_{ij1} are inversely correlated. We tested 18 instances of types C, D and E with n up to 200. Among them, types C and D instances were taken from OR-Library,¹ and type E instances were generated by ourselves, and are available at our web site.² For each of these GAP instances, we generated MRGAP instances by setting $a_{ijk} = 3a_{ij1}/4 + \gamma a_{ij1}/2$ for each $k = 2, 3, \ldots, s$ as in [5], where γ is a random number from [0, 1]. The generated MRGAP instances are available at our web site.³

Tables 1, 2 and 3 show the results of TS-CS, TS-noCS, TS-WCSP and CPLEX, where the time limit is set to 300 (resp., 600) seconds for each instance with n = 100 (resp., 200). Columns "best" show the objective values of the best solutions obtained by the algorithms within the time limit, and columns "TTB" (time to best) show the CPU seconds when the best solutions were found for the first time. Columns "LB" show the lower bounds on the optimal values, where the mark "†" means the value is optimal. (Most of these lower bounds were obtained by CPLEX, where the time limit was set to 3600 seconds. Some optimal values for GAP (i.e., s = 1) were found by Nauss [8], and some LBs for GAP were reported in [10], which were found by solving a Lagrangian relaxation problem. If $s \ge 2$, then optimal values and LBs were found by CPLEX.) In the tables, each "*" mark represents that the best cost is attained, and "—" means that no feasible solution was found. The average of "LB," "best" and "TTB" for n = 100 and 200, respectively, are also shown.

From the tables, we can observe the following.

¹URL of OR-Library: http://mscmga.ms.ic.ac.uk/jeb/orlib/gapinfo.html

²URL of our web site for GAP instances: http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/gap/

³URL of our web site for MRGAP instances: http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/mrgap/

				TS	TS-CS		TS-noCS		TS-WCSP		CPLEX	
n	m	s	LB	best	TTB	best	TTB	best	TTB	best	TTB	
100	5	1	$^{\dagger 1931}$	*1931	1.25	*1931	0.61	1933	30.00	*1931	2	
100	5	2	$^{+1933}$	*1933	2.39	*1933	58.54	*1933	15.68	*1933	0	
100	5	4	$^{\dagger 1943}$	*1943	172.35	*1943	197.17	1944	91.65	*1943	19	
100	5	8	$^{+1950}$	*1950	61.19	*1950	185.08	1956	179.87	*1950	26	
100	10	1	$^{\dagger 1402}$	*1402	5.49	*1402	28.92	*1402	15.87	*1402	9	
100	10	2	$^{\dagger 1409}$	*1409	133.34	1410	74.06	1411	261.89	*1409	35	
100	10	4	$^{\dagger 1419}$	*1419	37.40	*1419	53.13	*1419	93.59	*1419	38	
100	10	8	$^{\dagger 1435}$	1436	147.34	1440	208.26	*1435	227.31	*1435	271	
100	20	1	$^{\dagger 1243}$	1245	55.48	1245	43.30	1245	140.22	*1243	8	
100	20	2	$^{\dagger 1250}$	1251	45.39	1252	46.16	1253	202.30	*1250	5	
100	20	4	$^{\dagger 1254}$	1257	186.09	1256	294.35	1258	135.77	*1254	30	
100	20	8	$^{\dagger 1267}$	1269	205.60	1275	261.05	*1267	11.86	1272	199	
aver	0		1536.3	1537.1	87.78	1538.0	120.89	1538.0	117.17	1536.8	53.5	
200	5	1	$^{+3456}$	*3456	170.10	3458	5.91	3460	107.54	*3456	35	
200	5	2	$^{\dagger 3461}$	*3461	47.64	*3461	219.14	3462	180.82	*3461	17	
200	5	4	$^{\dagger 3466}$	*3466	167.53	*3466	196.33	3469	389.58	*3466	173	
200	5	8	$^{+3473}$	*3473	530.30	*3473	447.35	3478	294.82	3474	56	
200	10	1	†2806	2807	46.23	2808	156.07	2811	53.63	*2806	249	
200	10	2	†2811	*2812	316.68	2813	167.54	*2812	352.65	*2812	37	
200	10	4	†2819	2821	399.99	2821	444.46	2823	151.04	*2819	347	
200	10	8	2833	*2837	344.24	2842	381.29	2842	480.93	2842	134	
200	20	1	†2391	2393	369.54	2399	136.93	2394	31.13	*2391	296	
200	20	2	†2397	*2398	313.10	2400	155.53	2403	348.75	*2398	175	
200	20	4	2408	*2409	430.56	2416	165.83	2415	15.17	2415	115	
200	20	8	2415	2422	47.29	2424	419.02	2423	176.03	*2419	451	
aver	age		2894.7	2896.3	265.27	2898.4	241.28	2899.3	215.17	2896.6	173.8	

Table 1. Results for type C instances

- The performance of algorithm TS-CS is better than TS-noCS especially for types D and E instances. This indicates that incorporating the chained shift neighborhood is effective for hard instances.
- The performance of TS-CS is better than TS-WCSP and CPLEX. CPLEX is very effective for type C instances; however, TS-CS is much better for types D and E instances.

5 Conclusion

In this paper, we considered the multi-resource generalized assignment problem and proposed a tabu search algorithm in which a sophisticated neighborhood called the chained shift neighborhood is used. It was confirmed through computational comparisons on benchmark instances that the method is effective, especially for type D and E instances, which are known to be very difficult.

				TS-CS		TS-n	TS-noCS		TS-WCSP		CPLEX	
n	m	s	LB	best	TTB	best	TTB	best	TTB	best	TTB	
100	5	1	$^{+6353}$	*6357	109.87	6359	209.92	6370	115.87	6358	43	
100	5	2	6352	*6359	136.10	6371	53.42	6380	106.03	6360	27	
100	5	4	6362	*6379	207.25	6381	179.95	6404	297.04	6386	172	
100	5	8	6388	*6425	67.89	6428	239.62	6500	264.45	6428	244	
100	10	1	6342	*6361	246.00	6377	79.09	6418	192.77	6381	132	
100	10	2	6340	*6378	174.39	6405	168.45	6411	241.94	6419	88	
100	10	4	6361	*6430	274.92	6438	184.59	6516	126.63	6468	166	
100	10	8	6388	*6478	241.80	6520	232.30	6679	255.64	6528	83	
100	20	1	6177	*6231	194.94	6270	217.92	6305	204.90	6280	60	
100	20	2	6165	*6261	253.83	6305	56.77	6389	223.84	6316	19	
100	20	4	6182	*6321	277.59	6331	178.93	6529	58.70	6406	148	
100	20	8	6206	6482	234.49	*6481	270.78	6736	34.08	6588	68	
avera	age		6301.3	6371.8	201.59	6388.8	172.65	6469.8	176.82	6409.8	104.2	
200	5	1	12741	12751	191.63	12756	81.33	12760	87.70	*12750	62	
200	5	2	12751	*12766	441.53	12772	110.91	12778	171.48	*12766	534	
200	5	4	12745	12775	178.92	12778	151.80	12799	78.63	*12762	286	
200	5	8	12755	12805	527.78	12809	292.53	12844	348.73	*12787	432	
200	10	1	12426	12463	330.52	12482	555.38	12478	279.46	*12457	27	
200	10	2	12431	*12477	476.07	12518	512.70	12533	590.21	12482	578	
200	10	4	12432	*12496	471.01	12552	540.32	12586	548.07	12532	112	
200	10	8	12448	*12571	481.10	12592	513.42	12812	346.33	12577	209	
200	20	1	12230	*12312	230.72	12365	346.77	12409	445.56	12393	297	
200	20	2	12227	*12332	597.11	12384	568.76	12442	587.38	12425	21	
200	20	4	12237	*12396	576.45	12488	386.71	12605	573.62	12472	425	
200	20	8	12254	*12485	337.27	12650	481.50	12918	250.78	12548	132	
avera	age		12473.1	12552.4	403.34	12595.5	378.51	12663.7	359.00	12579.3	259.6	

Table 2. Results for type D instances

References

- [1] R.K. Ahuja, O. Ergun, J.B. Orlin, and A.P. Punnen, "A survey of very large-scale neighborhood search techniques," *Discrete Applied Mathematics*, 123 (2002) 75–102.
- [2] R.K. Ahuja, J.B. Orlin, and D. Sharma, "Very large-scale neighborhood search," *International Transactions in Operational Research*, 7 (2000) 301–317.
- [3] P.C. Chu and J.E. Beasley, "A genetic algorithm for the generalized assignment problem," Computers and Operations Research, 24 (1997) 17–23.
- [4] J.A. Díaz and E. Fernández, "A tabu search heuristic for the generalized assignment problem," *European Journal of Operational Research*, 132 (2001) 22–38.
- [5] B. Gavish and H. Pirkul, "Algorithms for the multi-resource generalized assignment problem," *Management Science*, 37 (1991) 695-713.
- [6] F. Glover, "Ejection chains, reference structures and alternating path methods for traveling salesman problems," *Discrete Applied Mathematics*, 65 (1996) 223–253.

		TS-CS		TS-n	TS-noCS		TS-WCSP		CPLEX	
n m s	LB	best	TTB	best	TTB	best	TTB	best	TTB	
$100 \ 5 \ 1$	†12681	*12681	54.08	12682	124.34	12753	2.72	*12681	44	
$100 \ 5 \ 2$	†12692	*12692	120.93	*12692	210.25	12727	28.90	*12692	212	
$100 \ 5 \ 4$	†12810	12812	104.03	12812	83.04	12893	79.48	*12810	24	
100 5 8	†12738	*12738	53.98	12739	210.64	12876	152.79	12749	61	
$100 \ 10 \ 1$	†11577	*11577	90.03	11584	91.42	11712	209.98	11584	200	
$100 \ 10 \ 2$	†11582	*11587	179.65	11604	290.33	11665	41.33	11612	80	
$100 \ 10 \ 4$	11636	*11676	289.32	11689	106.93	11864	102.15	11753	257	
100 10 8	11619	*11701	260.90	11756	230.60	11836	86.49	11739	258	
$100 \ 20 \ 1$	†8436	*8447	142.39	8488	110.94	8655	144.76	8565	72	
$100 \ 20 \ 2$	10123	*10150	207.09	10219	247.15	10471	79.65	10251	234	
$100 \ 20 \ 4$	10794	*11029	160.57	11075	82.28	11271	117.97	11443	78	
$100 \ 20 \ 8$	11224	*11610	265.33	11817	285.93	11957	143.07	12458	291	
average	11492.7	11558.3	160.69	11596.4	172.82	11723.3	99.11	11694.8	150.9	
200 5 1	†24930	24933	43.21	24933	399.77	25002	101.77	*24930	18	
200 5 2	†24933	24936	430.29	*24933	520.42	25024	519.47	*24933	131	
200 5 4	24990	*24999	537.27	25017	555.53	25091	280.81	25003	228	
200 5 8	†24943	24950	192.28	24970	449.00	25090	271.98	*24943	68	
$200 \ 10 \ 1$	†23307	*23312	411.12	23326	30.46	23414	494.72	23321	140	
$200 \ 10 \ 2$	23310	*23317	436.01	23333	51.82	23538	303.94	23325	386	
$200 \ 10 \ 4$	23344	*23363	376.65	23412	56.24	23628	83.62	23543	309	
$200 \ 10 \ 8$	23339	23412	198.96	*23410	357.69	23714	550.29	23744	56	
$200 \ 20 \ 1$	†22379	*22386	178.16	22455	519.64	22815	207.84	22457	185	
$200 \ 20 \ 2$	22387	*22408	333.97	22459	121.13	22834	377.76	22558	302	
$200 \ 20 \ 4$	22395	*22439	462.53	22517	566.93	22990	413.64	22782	238	
200 20 8	22476	*22614	317.52			23057	394.42	23482	85	
average	23561.1	23589.1	326.50			23849.8	333.36	23751.8	178.8	

Table 3. Results for type E instances

- [7] M. Laguna, J.P. Kelly, J.L. González-Velarde and F. Glover, "Tabu search for the multilevel generalized assignment problem," *European Journal of Operational Research*, 82 (1995) 176–189.
- [8] R.M. Nauss, "Solving the generalized assignment problem: An optimizing and heuristic approach," *INFORMS Journal on Computing*, to appear.
- [9] K. Nonobe and T. Ibaraki, "An improved tabu search method for the weighted constraint satisfaction problem," *INFOR*, 39 (2001) 131–151.
- [10] M. Yagiura, T. Ibaraki and F. Glover, "An ejection chain approach for the generalized assignment problem," *INFORMS Journal on Computing*, to appear.
- [11] M. Yagiura, T. Ibaraki and F. Glover, "A path relinking approach for the generalized assignment problem," *Proc. International Symposium on Scheduling*, Japan, June 4–6 (2002) 105–108.