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Preface

A variety of combinatorial optimization problems appear in many application fields, and
various algorithms have been proposed so far. However, there are numerous combinatorial
optimization problems for which no polynomial time algorithm to find an optimal solution
is known, e.g., those problems known as NP-hard. Under the widely believed conjecture
P # NP, exact algorithms for those problems must be exhaustively time consuming. To
overcome this difficulty, we may make use of a fact that, in most practical applications, we
do not need exact optimal solutions and are satisfied with sufficiently good solutions. In
this sense, approzimate or heuristic algorithms, which provide reasonably good solutions in

practically meaningful time, are very important and have been intensively studied recently.

There are several useful tools to design approximate algorithms, such as greedy method
and local search. These methods have been applied to many intractable problems for
their simplicity and flexibility, and succeeded in obtaining good solutions to some extent.
In recent years, more sophisticated algorithms that utilize these tools and some other
techniques in more flexible frameworks such as multi-start local search, genetic algorithm,
stmulated annealing, tabu search and their variants have been studied, and applied to

many NP-hard problems. Such algorithms are generically called metaheuristics.

In this thesis, we consider cutting and packing problems which are among such in-
tractable problems. Cutting and Packing problems are important in numerous real-world
applications, and hence many practical approximate algorithms have been proposed. How-
ever, there are numerous variants of cutting and packing problems, and many people, in
particular those in application fields, cannot solve their variant with existing algorithms,
nor afford to invest sufficient manpower and time to develop individual algorithms. The
aim of the thesis is to propose general models that can include various types of specific

variants, and to develop practical algorithms for them.

We first propose a new problem called the rectangle packing problem with general spa-
tial costs (RPGSC). Introducing various cost functions and defining them appropriately,
many types of cutting and packing problems and scheduling problems can be formulated

in this form. For this problem, we develop practical approximate algorithms based on local
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search and conduct thorough computational experiments with various type problems. We
then propose another problem called the two-dimensional cutting stock problem with a
constraint on the number of cutting patterns, and design local search algorithms based on
various heuristics and mathematical programming techniques.

Cutting and packing problems are closely related to real-world applications in such
fields as manufacturing industry, and new variants of the problems are continuously arising.
It would be impossible to develop individual algorithms for all of such problems, and we
believe it is very important to develop practical algorithms which can handle a wide range
of specific problems. The author hopes that the work contained in this thesis will be
helpful to advance the study in this intractable, important and interesting field.

March, 2004

Shinji Imahori
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Chapter 1

Introduction

1.1 Combinatorial optimization problem

The optimization problem we consider in this thesis is generally defined as follows:

minimize  f(z) (1.1.1)
subject to x € F,

where F' denotes a set of solutions = that satisfy all the given constraints. F is called the
feasible region and each = € F is called a feasible solution. The function f is called the
objective function, and a feasible solution z* € F is optimal if f(z*) < f(x) holds for all
feasible solutions = € F, and f(x*) is called the optimal value. We call an optimization
problem (1.1.1) as a combinatorial optimization problem if F is combinatorial in some
sense.

A variety of combinatorial optimization problems appear in many application fields;
e.g., vehicle routing [2, 61], machine scheduling [14, 45|, channel assignment [41, 67],
timetabling [15, 74], plant location [26, 113], VLSI design [35, 89], crew scheduling [17, 72],
production planning [86, 99] and so on, and numerous algorithms have been proposed so
far. In the theory of computational complexity, an algorithm is generally regarded as
efficient if its time complexity function is bounded above by a polynomial of the input
length. For some combinatorial optimization problems, efficient algorithms which run in
polynomial time have been proposed. For example, Kruskal [75] and Prim [98] proposed
algorithms for the minimum spanning tree problem which run in O(|E|log|V]) time, and
Dijkstra [27] proposed an algorithm for the shortest path problem which also runs in
O(|E|log |V]) time, where V is a set of vertices and E is a set of edges.

On the other hand, there are many combinatorial optimization problems for which no
polynomial time algorithm to find an optimal solution is known yet. Some examples of

such problems are given in the following.
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Traveling salesman problem

input: A complete directed graph G = (V, E) and a cost function ¢ : E — Ry

(the set of nonnegative real number).

output: A minimum cost tour of G, i.e., a directed simple cycle of |V| vertices

with minimum total cost.

Vertex cover problem

input: An undirected graph G = (V| E).

output: A minimum vertex cover of G, i.e., a subset V/ C V with minimum
cardinality |V'| such that for each edge {u,v} € F at least one of u and v
belongs to V.

Set covering problem

input: A finite set S and a collection C' = {51, S5,...,S,,} of subsets S; C S.

output: A minimum set cover for S, i.e., a collection C' C C of the minimum

cardinality |C'| such that every element in S belongs to at least one of
S; € c’.

Graph coloring problem

input: An undirected graph G = (V| E).

output: A coloring 7 : V. — {1,2,...,x} of all vertices v; € V with the
minimum number of colors ||, such that for each edge {u,v} € E vertices

w and v have different colors.

Most of those problems are known to be NP-hard (actually, all of the above problems are
NP-hard), and it is strongly believed that NP-hard problems have no polynomial time al-
gorithm [39]. In other words, solving these problems exactly may necessitate enumerating
an essential portion of the set of all solutions, whose number increases exponentially as
problem size grows.

Since the NP-hardness is based on the worst case complexity, it may be possible to solve
NP-hard problems efficiently in the practical sense. Representative methods frequently
applied to this end are branch-and-bound and dynamic programmaing, which enumerate
only promising solutions efficiently [60]. With intensive studies on these exact algorithms
and as a result of the rapid progress of computer technology, the problem size that can be
exactly solved has been increasing. However, it is not still large enough to accommodate

all the problems arising in real applications.
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Fortunately, in most applications, we are satisfied with good solutions obtained in
reasonable computational time even if we are not able to obtain an exact optimal solution.
In this sense, to deal with large instances of such intractable combinatorial optimization
problems, approximate or heuristic algorithms are important. Actually, such approaches
have been intensively studied in recent years.

In this thesis, we consider a certain type of intractable combinatorial optimization
problems, called cutting and packing problems. These problems are not only being rep-
resentative combinatorial optimization problems, but also important for industrial appli-
cations; e.g., wood, glass, steel and cloth industries, VLSI designing, newspaper paging,
container loading and so on. In Section 1.2, we explain various types of cutting and pack-
ing problems, and show several algorithms for those problems. It is very hard to find an
optimal solution for these problems, and hence we solve them heuristically. In Section 1.3,

we show several useful tools to design approximate and heuristic algorithms.

1.2 Cutting and packing problems

In this section, we first explain cutting and packing problems in general. Given many
small items, we want to place them into large objects without mutual overlap to mini-
mize/maximize a given objective function. There are numerous problems which belong to
this category, “cutting and packing problems,” and there have been many studies since
ancient days. In early stages, some problems of this category were solved by geometricians
and puzzlers. They solved various problems by elementary geometry, experience, hunch,

trial and error. Here we explain one of the problems that was considered from early days.

Packing of congruent circles in square

input: k circles of radius one.

output: A placement of circles without mutual overlap so that the area of the

square that covers all the circles is minimized.

In many real-world applications, we encounter cutting and packing problems and they
have been studied in numerous research disciplines such as computer science, operational
research, engineering, manufacturing and others. As a result, many variants of cutting
and packing problems are referred to in these applications; e.g., bin packing, cutting stock,
layout, loading, knapsack, nesting, orthogonal packing, partitioning, strip packing, trim
loss problem and so on.

Although cutting and packing problems have been studied from a long time ago,

Gilmore and Gomory’s articles in 1960’s [42, 43, 44] on linear programming approaches to
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one, two and more dimensional cutting stock problems were the first to present techniques
which could be practically applied to difficult real-world problems. Since then, articles
have been published every year on various types cutting and packing problems. In [104],
we can see the numbers of published papers from 1940 to 1989 and the titles of these
papers. See Figure 1.1 for a summary of the numbers of published papers. Although

250
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©
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c 100 88 g
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0 ||
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Figure 1.1: Number of published papers between 1940 and 1989

accurate data are not available, more papers have been published in 1990’s and 2000’s.
There are also many survey papers on cutting and packing problems; e.g., Dowsland and
Dowsland [28], Dyckhoff [31], Dyckhoff and Finke [32], Hopper and Turton [59], Lodi
et al. [78, 80]. From these, we could observe that cutting and packing problems have been

an attractive research area for several decades.

The cutting and packing problems can be classified according to their dimensions. The
most usual dimensions are 1, 2 and 3, and problems in these categories are more carefully
described in the following subsections. It might seem that there is no application for
the n-dimensional problem with n > 3; however, there are several applications for such
problems. For example, the problem to place boxes in a container (three dimensional area)
for a fixed period of time can be formulated as a four-dimensional problem. A very special
type of the multi-dimensional problem is the so-called the vector packing problem [38],
which will be discussed in Subsection 1.2.2.

In the following subsections, we first describe one-dimensional problem, then explain
two-dimensional problem, and briefly survey three-dimensional problem. In this thesis,

we propose algorithms for the two-dimensional cutting and packing problems, and hence,
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we mainly focus on the two-dimensional problems throughout the thesis. However, it is
important to survey problems of different dimensions since various techniques have been
utilized commonly for different dimensions. Among them, the one-dimensional case is

especially important because it is the most basic category of cutting and packing problems.

1.2.1 One-dimensional problem

One-dimensional problem is the most basic category of cutting and packing problems, and
many algorithms have been proposed so far. Many of these algorithms for this category
have been extended to two and more dimensions. We have three major problems in this
category: knapsack, bin packing and cutting stock problems. Each problem is formally

described as follows.

Knapsack problem (KP)

input: A set of items I, a size a(i) € Z1 (the set of nonnegative integer) and

a value ¢(i) € Z; for each i € I, and the knapsack capacity b € Z.

output: A subset I’ C I of the maximum total value ), c(i) such that the

total size ) ;. a(i) is b or less.

Bin packing problem (BPP)

input: A set of items I, a size a(i) € Z for each ¢ € I and the bin capacity
be Z,.

output: A partition of I into the minimum number k& of disjoint subsets
I, I, ..., I such that the total size Zz’elj a(7) is b or less for each sub-
set I;.

Cutting stock problem (CSP)

input: A set of items I, a size [(i) € Z; and a demand d(i) € Z for each
¢ € I, and the bin capacity b € Z,.

output: A family of cutting patterns of items py, po, ..., pr and the number of
applications z(j) for each pattern p; with the minimum total applications
Ej x(j) such that all demands are satisfied. Here, a cutting pattern p;
is described as p; = (a15,a2;,...,an;), where a;; € Z; is the number of

item ¢ in pattern p;, and ). a;;[(i) must be b or less.

Knapsack problem, KP in short, is one of the simplest problems in this category. There

are pseudo-polynomial time algorithms and fully polynomial time approximation schemes
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for KP [62]. Furthermore, dynamic programming and branch-and-bound algorithms for
KP can solve relatively large instances arising in real applications exactly in practical time.

On the other hand, bin packing problem (BPP) is strongly NP-hard and no pseudo-
polynomial time algorithm exists unless P = NP. Many researchers have proposed heuristic
and approximate algorithms, and the following three methods are basic and used in prac-
tice: next fit, first fit and best fit [69]. For these methods, we first specify a permutation

of items 7, and then put items into bins in this order based on specific rules.

Algorithm: Next Fit (NF)

Step 1: Set i:=1,j :=1 and b(1) := 0.

Step 2: If a(i) + b(j) < b, set b(j) := b(j) + a(i) (i.e., we put item i into the
jth bin). Otherwise, set j := j + 1 and I;(]) := a(7) (i.e., we close the jth

bin and open the next bin to place item 7).

Step 3: If i <n,set i :=1¢+1 and return to Step 2. Otherwise, output j and
halt.

Algorithm: First Fit (FF)

Step 1: Set i:=1,j:=1,k:=1 and b(1) := 0.

Step 2: If a(i) 4 b(j) < b, set b(j) := b(j) + a(i) (i.e., we put item 7 into the
jth bin) and go to Step 3. If a(i) +b(j) > b and j < k, set j := j +1 and
return to Step 2. Otherwise, set k := k + 1,b(k) := a(i) (i.e., we open a
new bin and put item ¢ into it), and go to Step 3.

Step 3: If ¢ < m, set ¢« := ¢+ 1,5 := 1 and return to Step 2. Otherwise,
output k£ and halt.

Algorithm: Best Fit (BF)

Step 1: Seti:=1,j:=1,J := {1} and b(1) := 0.

Step 2: If a(i) + b(j) > b holds for all bins j € .J, set j :==j +1,.J := J U {7}
and b(7) := a(i) (i.e., we open a new bin and put item 7 into it). Otherwise,
we choose a bin j with the maximum b(j) < b — a(i), and set b(j) :=
b(j) + a(i).

Step 3: If i < n, set ¢ := i+ 1 and return to Step 2. Otherwise, output |J]
and halt.

For these methods, the quality of the solution is dependent on the permutation of items.

In order to improve the quality of the solution, the following ideas have been developed:
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(1) Sorting items with its size in the descending order. Algorithms with this strategy are
called next fit decreasing, first fit decreasing and best fit decreasing, respectively. (2) Gen-
erating many permutations randomly and computing solutions for all of the permutations.
(3) Searching good permutations of items with local search or metaheuristic algorithms.
Cutting stock problem (CSP) is also a difficult and important problem, which arises
in many industries such as steel, paper, wood, glass and fiber. A classical approach
to CSP is to formulate it as an integer programming problem (IP), and solve it by a
heuristic method based on its linear programming (LP) relaxation. As it is impractical to
consider all cutting patterns, which correspond to columns in the LP relaxation, Gilmore
and Gomory [42, 43] proposed a column generation technique in 1960’s that generates
only those columns necessary to improve the lower bound of IP by solving the associated
knapsack problems. The LP relaxation often has the property that the rounded up value
of the LP lower bound is equal to the optimal value of IP [83]. After that, branch-and-
bound, heuristic and metaheuristic algorithms with the column generation technique have
been developed with certain computational success [111]. It is however observed that those
approaches tend to use many (usually, close to the number of product types |I]) different
cutting patterns. In recent cutting industries, the setup cost for changing patterns becomes
more significant and it is often impractical to use many different cutting patterns. Several
researchers (e.g., Foerster and Wischer [37], Haessler [54], Umetani et al. [108]) have
proposed algorithms for CSP with consideration on the number of cutting patterns. In
this thesis, we consider a two-dimensional cutting stock problem with consideration on

the number of cutting patterns, and propose a heuristic algorithm.

1.2.2 Two-dimensional problem

First, we classify the problems in this category into two types. One is to place items with
two independent dimensions (e.g., weight and length) into bins with capacity for each
dimension. Another type is to place two-dimensional small items into two-dimensional
large objects. The former is the so-called two-dimensional vector packing problem, which

is formally described as follows.

Two-dimensional vector packing problem

input: A set of items I, a weight w(i) and a length (i) for each ¢ € I, and
the bin capacity W and L for total weight and length, respectively.

output: A partition of I into the minimum number k£ of disjoint subsets
I, I, ..., I such that the total weight Eielj w(7) is bounded by W and

the total length Zz‘elj I(7) is bounded by L for each subset I;.
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There are many studies on this problem and numerous approximate algorithms have been
proposed [16, 38]. Note that various techniques for this problem have been extended to
the multi-dimensional vector packing problem.

It is not easy to describe the latter type problem (the problem to place two-dimensional
small items into two-dimensional large objects) formally since there are still many varia-
tions. We first explain how to classify such variations of this problem, and then describe

each specific problem formally. The following characteristics are important to classify.

Shapes of small items: (i) rectangle, (ii) polygon, (iii) circle and (iv) irreg-

ular object.

Assortment of small items: (i) many different shapes, (ii) many items of

relatively few different shapes and (iii) identical shape.

Assortment of large objects: (i) one object, (ii) many objects of identical

shape and (iii) many objects with different shapes.

Kind of assignment: (i) the selection of small items to be placed is consid-
ered using all available large objects, and (ii) all small items must be

placed and the selection of large objects is flexible.

Counsidering the geometrical nature of the problem, we state the shapes of small items
first. The problems with rectangular items may be the most basic and well-studied. In
this thesis, we propose some heuristic algorithms for this type of problem. We will describe
some specific problems of this type in Chapter 2, together with surveying previous work
on the two-dimensional rectangle packing problem.

Now, we briefly review other types of problems (i.e., shapes of small items are not
necessarily rectangle). In these decades, there have been many research papers on the
two-dimensional polygon packing problem, where several names have been used for the
same (or similar) problem, e.g., two-dimensional irregular packing, nesting problem, poly-
gon placement and so on. Also various techniques have been proposed to solve the problem.
The most popular techniques used in the previous work may be bottom left strategy, clus-

tering and no-fit polygon. Bottom left strategy was originally proposed for the rectangle

Figure 1.2: Bottom left strategy
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packing problem (see Section 2.3 for the detailed explanation), and also applied to the
polygon packing problem [29, 51]. Roughly speaking, bottom left strategy places small
items one by one at the lowest possible position, left justified. See Figure 1.2 for an exam-
ple. Clustering is another strategy to place small items. This method repeats the following
procedure until all items become one large item: Choose a few items, pack them as com-
pact as possible and consider the resulting combined item as one new item. Figure 1.3

represents an example of this method.

N

Figure 1.3: Clustering method

If the shape of small items are not convex, it is not trivial to place an item as close as
possible to another item without overlap. No-fit polygon [3] is utilized for this purpose.
See Figure 1.4 for an example of the no-fit polygon. We compute no-fit polygons for all

(Zh, =»

reference point

Figure 1.4: No-fit polygon

pairs ¢ and 7 of items in advance, and place the reference point of item ¢ on the edge of the
no-fit polygon NFP;; in order to place 7 adjacent to j. In many cases, the idea of no-fit
polygon is combined with the bottom left strategy and clustering method.

The problem to place circular items has also been studied by many researchers [23, 115].
As we mentioned at the beginning of this section, some problems of this type (usually, we
are given identical circles and one large object) have a long history and they have been
well studied theoretically. Some other problems (e.g., many different circles are given)

have been considered as a result of the rapid progress of computer technology. Figure 1.5
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represents an example of this problem where both of small items and large object are

circular form. For the circle packing problem, the position of each circle is represented by

Figure 1.5: Circle packing problem

the coordinates of the center of the circle and its radius, and they are utilized to eliminate
overlap.

The problem to pack irregular objects (i.e., each item is of arbitrary shape defined by
line segments and/or curves) seems to be very difficult to design effective algorithms. This
problem, however, appears in real-world applications, and researchers have proposed var-
ious algorithms with some approximation techniques [12, 94| (e.g., each item is described

by the line-segment approximation).

1.2.3 Three-dimensional problem

Three-dimensional problem also appears in various real-world applications, e.g., cutting
wood or foam rubber into small pieces, loading pallets with goods, and filling containers
with cargo. There are several variants of this problem in the literature, e.g., container
loading, three-dimensional strip packing, knapsack loading, three-dimensional bin pack-
ing, pallet loading and so on, and algorithms have been proposed for those problems [97].
These problems have similar properties to one- and two-dimensional problems, and are
more difficult. Hence, most algorithms proposed for the three-dimensional problem have
been based on heuristic or metaheuristic algorithms for one- and two-dimensional cutting
and packing problems. Note that, there are various original constraints in industrial ap-
plications, e.g., increasing stability, support of the load, possibility to carry in (resp., out)
items to (resp., from) containers, and we should design algorithms in consideration of each
situation. Bischoff and Ratcliff [11] gave an excellent overview of practical requirements

which may be imposed to the problem.
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1.3 Greedy method, local search and metaheuristics

There are several useful tools to design approximate and heuristic algorithms. We explain

three of the most common ideas, namely, greedy method, local search and metaheuristics.

1.3.1 Greedy method

The greedy method directly constructs a solution by successively determining the values of
variables on the basis of some local information. This method can find optimal solutions for
some problems, or find good solutions in many cases for other problems. Here, we show
two algorithms which are based on the greedy method. The first example is Kruskal’s

algorithm [75] for the minimum spanning tree problem.

Kruskal’s algorithm

input: A connected undirected graph G = (V, E') and a cost functionc: E — R.
output: A spanning tree H = (V,T) (i.e., a connected undirected graph with-

out cycle) with the minimum total cost ) . c(e).
Step 1: Set S:= F and T := 0.
Step 2: Find an edge e € S such that ¢(e) < c¢(e’) for all edges ¢’ € S, and

set S:= 5\ {e}.
Step 3: If there is no cycle in graph H' = (V,T U {e}), set T := T U {e}. If
S =0 or |T| =|V| -1 holds, output the minimum cost spanning tree

H = (V,T) and stop; otherwise return to Step 2.

This algorithm finds an optimal solution in O(|E|log |V|) time.
The second example is the nearest neighbor algorithm for the traveling salesman prob-
lem (TSP in short, see Section 1.1 for the definition). The nearest neighbor algorithm

proceeds as follows:

Pick any starting vertex. From the current vertex, go to the nearest vertex not
visited yet. Repeat this until all vertices have been visited, then return to the

starting vertex.
This algorithm runs in O(n?) time, where n is the number of vertices. Notice that although
each move is locally the best possible, the overall result can be quite poor.
1.3.2 Local search

The local search is an improvement method that iteratively modifies the current solution

to obtain a better solution. The local search, LS in short, starts from an initial feasible
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solution z(®) and repeatedly replaces it with a better solution in its neighborhood N(z)
until no better solution is found in N(z), where N(z) is a set of solutions obtainable from
x by applying a slight perturbation. A solution x is locally optimal, if no better solution
2' is found in N(z). The simple local search algorithm with an initial solution x(%),

neighborhood N(z) and the objective function f(x) is formally described as follows.

Algorithm: Local Search (LS)

Step 1: Set z := z(0).

Step 2: If there is a feasible solution z' € N(z) such that f(z') < f(z) holds,
set x := z’ and return to Step 2. Otherwise (i.e., f(z) < f(z') holds for
all solutions z’ € N(z)), output the current locally optimal solution z

and stop.

The search procedure of finding the next solution 2’ in Step 2 is called the neighborhood
search, and the set of all solutions which may be potentially visited in a local search
algorithm is called the search space. The following ingredients must be specified in de-
signing LS and the performance of an algorithm highly depends on them: Initial solution,

neighborhood and move strategy.

1.3.3 Metaheuristics

In general, if only one trial of LS is applied, solutions of better quality may remain un-
visited, and it is hard to attain a high quality of the output solution. To overcome this,

many variants of simple LS have been developed. We briefly survey their strategies here.

Initial solution: generating a number of different initial solutions to which LS is applied,
e.g., multi-start local search (MLS) [70], iterated local search (ILS) [68], greedy ran-
domized adaptive search procedure (GRASP) [36], variable neighborhood search [87]

and scatter search [47].

Neighborhood: adopting a sophisticated or larger neighborhood, e.g., variable depth
search [70], very large-scale neighborhood search [7] and ejection chain [48, 118].

Move strategy: allowing to move to worse solutions, and controlling the moves by a
randomized or sophisticated strategy, e.g., simulated annealing (SA) [71], threshold
accepting [30] and tabu search (TS) [46, 50].

Search space: adopting a search space different from the feasible region F' (i.e., permit-
ting to search in the infeasible region), and modifying the objective function f so

that we can evaluate the amount of infeasibility of solutions. This approach is often
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used in approximate algorithms for two reasons: (1) just finding a feasible solution is
not easy for many combinatorial optimization problems and (2) many good solutions

exist around the boundary between the feasible and infeasible regions.

Evaluation function: adaptively perturbating the evaluation function in order to escape
from poor locally optimal solutions, e.g., guided local search [114] and search space

smoothing method [52].

The framework of these variants of LS are called metaheuristics. In the rest of this
subsection, we show some representative metaheuristic algorithms and some algorithms
which we will use in this thesis. For more details about local search and metaheuristics,
see references [1, 95].

The multi-start local search (MLS) is one of the simplest metaheuristic algorithms. In
MLS, we generate many initial solutions randomly, and apply LS to each initial solution

independently. Then, we output the best of the obtained locally optimal solutions.

Algorithm: Multi-start Local Search (MLS)

Step 1: Initialize z* to be an arbitrary solution.
Step 2: Generate a solution z randomly and improve it by LS.

Step 3: If f(x) < f(z*) holds, set z* := z. If some stopping criterion is satis-
fied, output the best solution x* found in the search and halt; otherwise

return to Step 2.

Here, f is the given objective function. As a stopping criterion, one of the following three
criteria is usually used: (1) computational time, (2) number of iterations and (3) number
of consecutive “failure” iterations; i.e., if z* is not improved for the predetermined number
of consecutive iterations, output the best solution x* and stop.

The iterated local search (ILS) is a variant of MLS, in which initial solutions are
generated by slightly perturbing a good solution xge.q obtained so far. It is important to
generate initial solutions which retain some features of solution zg.q and to avoid a cycling
of solutions in order to improve the performance of ILS. Here, we describe an iterated local

search algorithm which uses the best obtained solution z* as Tgeeq-

Algorithm: Iterated Local Search (ILS)

Step 1: Initialize * to be an arbitrary solution.
Step 2: Generate a solution z by slightly perturbing z* randomly.

Step 3: Improve z by LS.
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Step 4: If f(x) < f(«*) holds, set z* := z. If some stopping criterion is

satisfied, output z* and halt; otherwise return to Step 2.

The genetic algorithm (GA) [57] is based on the evolutionary process in nature. GA
repeatedly generates a set of new solutions @ by applying the operations crossover and/or
mutation to the set of current solutions P. A crossover generates one or more new solutions
by combining two or more current solutions, and a mutation generates a new solution by
slightly perturbating a current solution. GA starts from an initial set of solutions P and

repeatedly replaces P with P’ C P U @ according to its selection rule.

Algorithm: Genetic Algorithm (GA)

Step 1: Generate an initial set of solutions P and let z* be the best solution

among P.

Step 2: Repeat the following steps 2-1 and 2-2 until the set of new solutions Q
are obtained where the cardinality of ) is prespecified.

2-1: Choose two or more solutions belong to P and crossover them to

generate one or more new solutions.

2-2: Choose a solution belongs to P and mutate it to generate a new

solution.

Step 3: If there is a solution z € Q with f(z) < f(z*), choose a best solution

x € Q and set z* 1= z.

Step 4: Select a set of solutions P’ (of a prespecified size) from the resulting
PuUQ@, and set P := P'.

Step 5: If some stopping criterion is satisfied, output the best obtained solu-

tion x* and halt; otherwise return to Step 2.

In Step 4, the following strategies to make a new set of solutions P’ are often used:
random selection, roulette wheel selection, and elitism. The above framework is called as
the simple genetic algorithm, and it is known that the quality of its solution is not as good
as other metaheuristics for most problems. Brady [13] combined GA with LS, which is
called the genetic local search (GLS), and it attained certain computational success. For
more details about the genetic algorithm, see reference [25].

The simulated annealing (SA) is a kind of probabilistic local search, in which test
solutions are randomly chosen from N(z) and accepted with probability that is 1 if the
test solution is better than the current solution x, and is positive even if it is worse

than z. By allowing moves to worse solutions, SA is able to escape from poor locally
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optimal solutions. The acceptance probability of moves is controlled by a parameter

called temperature, whose idea stems from the physical process of annealing.

Algorithm: Simulated Annealing (SA)

Step 1: Generate an initial solution  randomly and set z* := x. Determine

the initial temperature .

Step 2: Generate a solution ' € N(z) randomly, and set A := f(z') — f(x).
If A < 0 holds (i.e., a better solution is found), set x := z'; otherwise set

z := z' with probability e=2/t,

Step 3: If f(z) < f(z*) holds, set z* := x. If some stopping criterion is sat-
isfied, output z* and halt; otherwise update the temperature ¢ according

to some rule and return to Step 2.

A rule to adjust the temperature is called cooling schedule, and various ideas were pro-
posed [22]. One of the simplest rules is the geometric cooling, where we update ¢t := at
(0 < a < 1 is a parameter) at intervals of the prespecified iterations.

The tabu search (TS) tries to enhance LS by using the memory of previous searches.
TS repeatedly replaces the current solution x with its best neighbor z’ € N(z)\ ({z} UT)
even if f(z') > f(z) holds, where the set T, called the tabu list, is a set of solutions which
includes those solutions most recently visited. Cycling of a short period can be avoided
as a result of introducing tabu list. See reference [50] for detailed explanation of the tabu

search.

Algorithm: Tabu Search (TS)

Step 1: Generate an initial solution x. Set z* := x and T := 0.
Step 2: Find the best solution ' € N(x) \ ({z} UT), and set = := a'.

Step 3: If f(z) < f(z*) holds, set z* := z. If some stopping criterion is
satisfied, output the best obtained solution =* and halt; otherwise update

T according to some rule and return to Step 2.

Theoretically, very little is known about nontrivial bounds on the quality and the time
complexity of local search. There are a few theoretical results for metaheuristic algorithms,
e.g., asymptotic convergence of SA under some appropriate assumptions [40, 82|, similar
results for GA and the probabilistic tabu search [33, 101], and finite time convergence of
TS [49, 55]; however, these results do not assure that we can find good solutions in realistic

time.
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However, in practice, many local search and metaheuristic algorithms are successful to
obtain sufficiently good solutions in reasonable computational time. One of the attractive
features of local search and metaheuristics consists in its simplicity and robustness. We can
develop local search and metaheuristic algorithms without knowing detailed mathematical
properties of the problem, and still attain reasonably good solutions in practically feasible
time [117]. Another good feature comes from its flexibility, i.e., we can further improve
their performance by introducing sophisticated data structures and effective heuristics of

the problem.

1.4 Research objectives and overview of the thesis

As we have seen in this chapter, cutting and packing problems have the following proper-

ties:

- intractable (NP-hard) to compute exact optimal solutions,
- important in real-world applications,

- there are many variations of the problems.

Therefore, practical approximate algorithms for cutting and packing problems are needed;
in fact many heuristic and metaheuristic algorithms have been proposed during these sev-
eral decades. However still people in application fields cannot solve their specific problems
in the practical sense, nor afford to invest sufficient manpower and time to develop individ-
ual algorithms. Our purpose in this thesis is to introduce a new problem, to which a wide
range of specific problems can be reducible, and develop practical approximate algorithms
for this problem. In general, however, when we consider a general problem encompassing
many problems, problem structures of individual problems cannot be exploited, and hence
it becomes hard to attain higher performance. We therefore restrict the target of this study
to the two-dimensional rectangle packing problem, and consider a general framework of
this problem. Note that, there are still many variants for the rectangle packing problem,
and we show some of them in Chapter 2. We would like to attain as high performance as
specialized algorithms for various types of the rectangle packing problem.

The thesis is organized as follows. In Chapter 2, we define various specific problems
of the two-dimensional rectangle packing problem (2DRPP). We survey previous work on
2DRPP and explain several basic techniques for solving the problem. We then propose a
new general formulation of the rectangle packing problem. The problem we consider in
this thesis is the two-dimensional rectangle packing problem with general spatial costs,
which is characterized by its spatial cost functions and the modes for each rectangle. In

Chapter 2, we show that numerous problems in practice (not only various types of the
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rectangle packing problems but also some scheduling problems) can be reduced to our
problem.

In Chapter 3, we propose local search algorithms for the rectangle packing problem
with general spatial costs (RPGSC). In order to design algorithms for RPGSC, we must
specify the following ingredients.

1. Coding scheme: How to represent a solution.
2. Decoding algorithm: How to compute a placement from a coded solution.
3. Search strategy: How to find a good coded solution.

To represent a solution of this problem, we utilize the sequence pair coding scheme which
was proposed by Murata et al. [90]. We propose two different decoding algorithms to
find an optimal location of the rectangles using dynamic programming. In order to find a
good coded solution, we propose metaheuristic algorithms based on local search. To make
the search efficient, we define the critical path that corresponds to the bottleneck of the
current solution, and make use of it to reduce the sizes of various neighborhoods. The local
search algorithms based on these neighborhoods are then incorporated in metaheuristic
algorithms. We report computational results on various implementations, and compare
our algorithms with other existing algorithms for various types of the rectangle packing
problem and a real-world scheduling problem.

In Chapter 4, we tackle the same problem RPGSC of Chapter 3. In this chapter,
we propose new decoding algorithms which improve the amortized time complexity of
the previous decoding algorithms. The new decoding algorithms work efficiently in the
neighborhood search. We then design metaheuristic algorithms with the new decoding
algorithms. The computational results for the rectangle packing problem and a real-
world scheduling problem are reported, and they exhibit good prospects of the proposed
algorithms.

In Chapter 5, we consider a variant of the two-dimensional rectangle packing problem,
called the two-dimensional cutting stock problem with a given number of different patterns.
As we mentioned in Subsection 1.2.1, the setup cost for changing patterns is more dominant
in recent manufacturing industries, and it is impractical to use many different cutting
patterns. This motivated us to reduce both of the number of different cutting patterns
and the unused area. In our local search algorithms, we use several heuristic algorithms
(including the rectangle packing algorithms in Chapters 3 and 4) as their components. We
generate random test instances of this problem and conduct computational experiments to
compare our algorithms with various different neighborhood operations. We also compute
the trade-off curves between the number of different cutting patterns m and the solution

quality.
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Finally, in Chapter 6, we summarize our study in this thesis.



Chapter 2

Two-Dimensional Rectangle

Packing Problem

2.1 Introduction

In this chapter, we give the definitions of the two-dimensional rectangle packing problem
(2DRPP) and introduce some specific problems with various constraints. For 2DRPP,
there are many coding schemes and decoding methods in the literature. We briefly review
them and explain heuristic and metaheuristic algorithms with these schemes and methods.
Then, we propose a new formulation of 2DRPP with general spatial costs and modes for
each rectangle. Defining spatial cost functions and modes appropriately, various cutting
and packing problems and scheduling problems can be formulated in this form. We show

some examples of such problems.

2.2 Formulations of 2DRPP

The two-dimensional rectangle packing problem, 2DRPP in short, is defined as follows.
We are given n small rectangles I = {1,2,...,n}, where each rectangle 7 € I has a width
w; and a height h;, and two-dimensional large objects with rectangular form. We place
small rectangles into large objects to minimize a given objective function.

As we mentioned in the previous chapter, there are still many variations for this prob-
lem, and the following characteristics are important to classify: kind of assignment, as-
sortment of large objects, assortment of small rectangles, and orientation of rectangles.
We will review some specific variations of the two-dimensional rectangle packing problem,
and give various formulations for those in this section.

First, if a selection of small rectangles are placed in one large object of given size,
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the problem is called the two-dimensional knapsack problem, and one of the most basic

formulations of this type is as follows.

Two-dimensional knapsack problem

input: A set of small rectangles ¢ € I with its width w;, height h; and value ¢;,
and a two-dimensional knapsack with its width W and height H.

output: A subset I’ C I of the small rectangles with maximum total value
> icr ¢i such that all rectangles i € I' can be placed in the knapsack

without mutual overlap.

There are several variants of this problem, e.g., each small rectangle ¢ can be selected up
to b; times, where b; is a given upper bound. There have been many studies on these
problems and numerous algorithms were proposed [24, 81, 109, 116].

We then consider several types of the rectangle packing problem with a focus on
the large rectangular objects. We explain three different types of problems called the
area minimization, strip packing and two-dimensional bin packing, respectively. For each

problem, we are given a set of small rectangles ¢ with its width w; and height h;.

Area minimization problem: We are given one large object whose width
and height are decision variables. The objective is to minimize the area
of the large rectangular object that covers all of the small rectangles [90,

92, 105, 106).

Strip packing problem: We are given one large object (called strip) whose
width W is given and height H is a decision variable. The objective is
to minimize the height H of the strip subject to all small rectangles are

placed in the strip without mutual overlap [58, 77, 85].

Two-dimensional bin packing problem: We are given an unlimited num-
ber of large objects (rectangular bins), having identical width W and
height H. The objective is to minimize the number of bins utilized to

place all small rectangles [10, 79, 80].

We then mention the following two problems, called the two-dimensional cutting stock
and pallet loading, which have distinct characters on the small rectangles. We first consider
the two-dimensional cutting stock problem. We define several terms before going to the
definition of the problem. A cutting pattern p; is described as p; = (a1;,a2;,...,an;),
where a;; € Z is the number of small rectangle i (called product) cut from a large object
(called stock sheet) by pattern p;. A placement of products in a pattern is a set of their

locations in one stock sheet, where a placement is feasible if all the products are placed in
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one stock sheet without mutual overlap. We call a pattern p; feasible if it has a feasible
placement. Let S denote the set of all feasible patterns. Note that, the set S is very large
and it is not explicitly given; i.e., we must find a feasible placement to confirm that a
pattern is feasible. Now, the two-dimensional cutting stock problem is formally described

as follows.

Two-dimensional cutting stock problem

input: A set of small rectangles ¢ € I with its width w;, height h; and demand
d;, and an unlimited number of large objects (rectangular bins), having

identical width W and height H.

output: A set of cutting patterns Il = {p1,p2,...,pjq} € S, and the numbers
of applications X = (w1,2g,..., o) of all the patterns p; € II, where
S is the set of feasible cutting patterns and z; € Z. The objective is

to minimize the total number of stock sheets > xj subject to the

p; €11
demand constraint ijeH a;jx; > d; for each rectangle ¢ € I.

This is an important problem for various real-world applications such as the manufacturing
industry. In 1965, Gilmore and Gomory extended their work on the (one-dimensional)
cutting stock problem [42, 43] to this problem [44]. They proposed a column generation
scheme in which new cutting patterns are produced by solving the generalized knapsack
problems. After this paper, many heuristic algorithms based on the column generation
technique have been proposed [18, 24, 34, 109, 110, 112]. In this thesis, we consider a
variant of this problem considering the number of different cutting patterns |II|. It is called
the two-dimensional cutting stock problem with a given number of different patterns, and
we propose heuristic algorithms for this problem with an aim of minimizing both of the
total number of stock sheets and the number of different cutting patterns. The details will
be described in Chapter 5.

Now, we define another type of the rectangle packing problem called the pallet loading
problem. This problem has also been studied by many researchers [76, 88]. The complexity
of this problem is one of the well-known open problems in this field. That is, no polynomial
time algorithm to find an optimal solution nor the verification of the NP-hardness of this

problem is known. The problem is formally defined as follows.

Pallet loading problem

input: A small rectangle with its width w and height h, and a large rectan-

gular object with its width W and height H.
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output: The maximum number of small rectangles which are placed on the
large object under the condition that no two rectangles overlap, where

each rectangle can be rotated by 90°.

Finally, we explain some other constraints for the rectangle packing problem. The
rectangle packing problem is closely related to the real-world applications, and numerous
original constraints for each specific problem arise. Among them, orientation and guillotine
cut constraint are especially important. For some problems, we assume that the small
rectangles have a fixed orientation (i.e., they cannot be rotated), and rotation (usually
by 90°, sometimes arbitrary) may be allowed for other problems. Guillotine cut constraint
signifies that the small rectangles must be obtained through a sequence of edge-to-edge
cuts parallel to the edges of the large object (see Figure 2.1 as an example), which is

usually imposed by technical limitations of the automated cutting machines.

(a) guillotine cut (b) non-guillotine cut

Figure 2.1: Guillotine cut constraint

Several other constraints on the rectangle packing problem can be found in the liter-
ature and real-world applications; e.g., the maximum number of small rectangles for one

large object is limited, the location of some small rectangles are fixed and so on.

2.3 Previous work on 2DRPP

In this section, we will review previous work on 2DRPP. If we search directly the x and y
coordinates of each small rectangle, an effective search will be difficult, since the number of
solutions is uncountably many and eliminating overlap of rectangles is not easy. Therefore
numerous coding schemes to represent solutions have been proposed [8, 19, 21, 58, 77, 79,
90, 92, 105, 116]. We review various algorithms for 2DRPP with a focus on the coding
schemes and decoding algorithms.

One of the most popular coding schemes is to represent a solution by a permutation

of n rectangles. Various decoding algorithms have been proposed for this coding scheme;
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they place rectangles one by one in this order based on some rule. Most of the approaches
are level algorithms, i.e., placement is obtained by placing rectangles, from left to right,
in rows forming levels. The first level is the bottom of the large object, and subsequent
levels are produced by the horizontal line coinciding with the top of the tallest rectangle
packed on the level below. As we mentioned in Subsection 1.2.1, the next fit, first fit and
best fit are famous methods for the one-dimensional problem, and these methods have
been extended to the two-dimensional rectangle packing problem. In each case, the small
rectangles are initially sorted in the non-increasing order of height, and packed in this

order. Let 7 denote the current rectangle, and s the level created most recently.

e Neut fit decreasing height (NFDH) strategy: rectangle i is packed left justified on
level s, if it fits. Otherwise, a new level (s := s + 1) is created and ¢ is packed left

justified into it.

e First fit decreasing height (FFDH) strategy: rectangle i is packed left justified on
the first level where it fits, if any. If no level can accommodate 7, a new level is

initialized as in NFDH.

e Best fit decreasing height (BFDH) strategy: rectangle ¢ is packed left justified on the
level that minimizes the unused horizontal space among those where it fits. If no

level can accommodate 2, a new level is initialized as in NFDH.

The above strategies are illustrated through an example in Figure 2.2.

EG

(a) NFDH (b) FFDH (C) BFDH

Figure 2.2: Three classical level algorithms

There are many theoretical and computational results for these algorithms. For exam-
ple, Coffman et al. [21] analyzed NFDH and FFDH for the solution of the strip packing

problem and determined their asymptotic worst-case behavior:
NFDH(Z) < 2-OPT(Z) + 1,

17
FFDH(Z) < 75 - OPT(Z) +1,
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where 7 is an instance of the strip packing problem such that the heights of rectangles
are normalized as max; h; = 1, NFDH(Z) (resp., FFDH(Z)) is the height of the strip
(objective value) by algorithm NFDH (resp., FFDH) for instance Z, and OPT(Z) is the
optimal height of the strip (optimal value) for instance Z.

Chung et al. [20] proposed a two-phase algorithm for the two-dimensional bin packing
problem called the hybrid first fit, and analyzed its approximation ratio. This algorithm

is briefly described as follows (see Figure 2.3 as an example): We first pack rectangles into

H, 7 —9| 4 6
Hs 4 2
gl 6 5 3
e ? I8 ’ 9
H, 1 1
3 3

Figure 2.3: Hybrid first fit strategy for the two-dimensional bin packing problem

one strip of width W by FFDH, and set H; as the height of each level. Then solve the
one-dimensional bin packing problem with item sizes H; and bin capacity H through the
first fit algorithm for BPP.

A different classical approach, which does not pack the rectangles by levels, was pro-
posed by Baker et al. [8]. Their algorithm is called the bottom left (BL) algorithm: We
first specify a permutation of the given rectangles and then pack them one by one in this
order at the lowest possible position, left justified. This approach is illustrated through
an example in Figure 2.4. There are many variants of this algorithm [19, 58, 77|, and it
seems that this strategy works well for many specific problems.

There are still many algorithms which utilize the permutation to represent a solution.
For example, Lodi et al. [79] proposed several decoding algorithms such as floor ceiling,
alternate directions and touching perimeter, and computationally compared with other
classical decoding algorithms. Wu et al. [116] proposed a complicated decoding algorithm
called as effective quasi-human based heuristic, and achieved certain computational suc-
cess.

Now, we explain other coding schemes for the rectangle packing problem. The schemes

we explain here describe the relative locations for each pair of rectangles by a coded
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Pl = >k

Figure 2.4: BL algorithm for the strip packing problem

solution, and decoding algorithms for those coding schemes solve the two-dimensional
rectangle packing problem under the given constraints (i.e., relative locations).

Nakatake et al. [92] proposed a coding scheme called the bounded-sliceline grid (BSG).
BSG (see Figure 2.5 as an example) consists of a set of small rooms which are separated

by horizontal and vertical segments. To represent a solution, we put all the rectangles

DT -

| "] :

Figure 2.5: Bounded slice-line grid

into rooms, where at most one rectangle can be placed in each room. Based on this coded
solution, we assign relative locations for each pair of rectangles, e.g., in Figure 2.5, “4 is
right of 17, “4 is above 2”7, “4 is left of 5”7 and so on. Nakatake et al. proposed a decoding
algorithm (i.e., algorithm to compute an optimal placement under the constraints on rela-
tive locations) which runs in linear time of the number of small rooms. They also proposed
a simulated annealing algorithm based on BSG, and obtained good computational results
for the area minimization problem.

Murata et al. [90] proposed a coding scheme called the sequence pair. For the sequence
pair representation, a solution is represented by a pair of permutations of n rectangles (see

Figure 2.6 as an example). Based on this coded solution, we assign relative locations for
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o4 :6,3,1,4,5,2

3 5
4

o_:1,2,3,4,6,5 L

Figure 2.6: Sequence pair

each pair 7 and j of rectangles as follows: If ¢ is before 7 in both permutations, we must
place ¢ left of 5. If 7 is before j in oy and after j in o_, we place ¢ above j. For example,
in Figure 2.6, “1 is before 4 in both permutations, and hence 1 is left of 4”7, “4 is before 2
in o4 and after 2 in o_, and hence 4 is above 2” and so on.

In Chapters 3 and 4, we propose heuristic algorithms for RPGSC with this coding
scheme. We will give a more precise definition of the sequence pair in Section 3.2. For this
coding scheme, Murata et al. [90] proposed an O(n?) time decoding algorithm to obtain
an optimal placement (i.e., x and y coordinates of rectangles) from a pair of permuta-
tions of rectangles. Takahashi [105] and Tang et al. [106] improved the time complexity
of the decoding algorithm to O(nlogn); Tang and Wong [107] further improved it to
O(nloglogn).

There are other coding schemes which describe the relative locations for each pair of
rectangles. For example, Guo et al. [53] proposed an ordered tree (called O tree) structure
to represent a solution, and Sakanushi et al. [102] proposed a coding scheme called the

quarter-state-sequence.

2.4 2DRPP with general spatial costs (RPGSC)

In this section, we propose the rectangle packing problem with general spatial costs,
RPGSC in short. This problem is very general, and various types of rectangle pack-
ing problems and scheduling problems can be formulated in this form. We first formulate

the problem formally, and then show several problems which are reducible to RPGSC.

2.4.1 Formulation

Let I = {1,2,...,n} be a set of n rectangles. Each rectangle ¢ € I has m; modes, and

each mode k (k =1,2,...,m;) of rectangle 7 specifies:

k)

- a width wg , a height hz(-k) (wgk), hgk) > 0) and a cost cz(-k) of the mode,
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Figure 2.7: An example of the spatial cost function

(%)

- spatial cost functions pgk)(m) and ¢; ’(y) on the location (x,y) of the rectangle,

where the location of a rectangle means the (z,y)-coordinate of its lower left corner.

(k)

)

(k)

; (y) are piecewise linear and nonnegative (i.e., p(k)(x),

We assume that p; ’(z) and ¢ :

qgk)(y) > 0 hold for all z,y € [—oo0,00]). It is also assumed that if z,y — Zoo,
(k) (k)

then p;,"’(z),q; '(y) — +oo. Moreover, we assume that these functions are lower semi-

continuous; that is, any discontinuous point z (if exists) must satisfy
k . . k k
P (@) < lim min{p{" (@ + ¢), o (@ — o)} (24.1)
(see Figure 2.7 as an example). The assumption on the discontinuous points of qgk)(y)
is similar. The latter two conditions are necessary to ensure the existence of an optimal
solution, and most of natural spatial cost functions satisfy them. Note that the spatial
cost functions can be non-convex and discontinuous as long as they satisfy the above

conditions. It is also assumed throughout the thesis (unless otherwise stated) that the

information of each linear piece of functions pz(-k)(x) and qgk)(y) are given explicitly, and
each function is represented by the linked lists (see Figure 2.8 as an example). In many
applications, the number of linear pieces of each spatial cost function is small, and hence

this assumption is natural. Given the modes of n rectangles

p(m) = (pa (), p2(7), - o (7)),

a packing 7 is determined by locations (z;(7), y;(7)) of all rectangles 7. We define pyax(7)

and qmax(7) as follows:

Prmax(m) = max p"* ™ (ai()), (2.4.2)
1€
gmax(7) = max 0" (yi (). (2.4.3)

Now we are given two cost functions ¢(pmax(7), ¢max (7)) and c(u(m)). We assume that

function g is nondecreasing in ppax(m) and guax(7), and can be computed in O(1) time
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P () A 0 (y) i
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Figure 2.8: Linked lists representing piecewise linear functions

for given pmax(m) and gmax(m). Moreover, we assume that c¢(u(m)) can be computed in
O(n) time for a given p(7), and c(u(m)) — c(p(7")) can be computed in O(|{i € I'| pu;(7) #
pi(7)}]) time! for given p(7) and p(7'). Then, the rectangle packing problem with general

spatial costs is defined as follows:

RPGSC:  minimize (D (1), i (1)) + ()
subject to At least one of the next four inequalities
holds for every pair (i,7) of rectangles:
i)+ w ) < (), (2
zj(m) + wli " )<x() (2.4.5
yi(m) + b < yi(m), (2.4.6
W)Mw) i), (247

The constraints from (2.4.4) to (2.4.7) mean that no two rectangles overlap in packing ,
and we call a packing satisfying all constraints feasible. For example, condition (2.4.4)
means that the right side of rectangle i is placed to the left of the left side of rectangle j.
Condition (2.4.6) means that the upper hem of rectangle ¢ is placed below the lower hem

of rectangle j.

"We assume that we have already computed c(u(n')), stored useful information and could utilize it
in the computation of c(u(rw)) — c(u(r')) if necessary. This assumption is natural in local search and

metaheuristic algorithms.
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Typical examples of g(pmax(7), gmax (7)) are

g(pmax(”r)i qma.x(”'r» = pmax(”r) + qma.x(ﬂ)a
(pma.x(”r)i qma.x(”'r» = pmax("r) ' qma.x(ﬂ)a

Q

g Ina.x(7r qma.x('n_)) = maX{pmax(’”):Qmax(”)}a

and typical examples of ¢(u(m)) are
c(p(r)) = chlli(ﬂ')),

el

(i ().

c{u(m)) = max }

Defining pgk)@), qgk)(y) and Cgk)

for each 7 and k appropriately, various types of cut-
ting and packing problems and scheduling problems can be formulated in our form. For
example, we can treat a rectangle packing problem in which rotations of 90° are allowed
as a special case of RPGSC by considering two modes of (1) the original orientation and
(2) the orientation rotated by 90°. We will show some specific problems which can be

formulated as RPGSC in the following subsection.

2.4.2 Problems reducible to RPGSC

In this section, we show several problems which are reducible to RPGSC. Some of the
problems have already been defined in Chapters 1 and 2, but we will describe them again
for readability. The first example is the (one-dimensional) bin packing problem (defined
in Subsection 1.2.1), which is known to be strongly NP-hard [39].

Bin packing problem

input: A set of items I, a size a(i) € Z for each ¢ € I and the bin capacity
be Z,.

output: A partition of I into the minimum number k& of disjoint subsets
I, I, ..., I such that the total size Zz’elj a(7) is b or less for each sub-
set I;.

This problem is polynomially reducible to RPGSC by the following reduction. In the

resulting RPGSC instance, each rectangle has only one mode (i.e., m; =1 for all 7). For

each 1 =1,2,...,n, we set
wi) = a(i), Y =1,
+oo (z <0)
Py =¢0  (0<z<b—uwy ¢Py) = {+OO <0
y+1 (y>0).

+oo (z>b— wgl)),
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Here, pmax(m) = 400 means that there is at least one subset I; such that the total size
Eielj a(i) is more than b, and gmax(7) denotes the number of disjoint subsets k. The
objective of the reduced RPGSC instance is to minimize ppax(7) + Gmax (7).

Various types of the two-dimensional rectangle packing problems explained in this
chapter can be also transformed to RPGSC. The first example is the area minimization

problem with fixed orientation.

Area minimization problem

input: The set of n rectangles ¢ € I with its width w; and height h;.

output: A packing 7 such that all rectangles in I are packed in a rectangular
object without overlap and the area of the object is minimized, where the

orientation of each small rectangle is fixed.

This problem is polynomially reducible to RPGSC by the following reduction. In the
reduced RPGSC instance, each rectangle has only one mode. For each 1 =1,2,...,n, we

set

pz(-l)(x): {+oo (z < 0) (1)( - {—i—oo (y <0)

W _ B —

z+uw (@>0), 7T \y+a? @ >o0).
Pmax(7T) (resp., gmax(7m)) denotes the width (resp., the height) of the large rectangular
object, and the objective of the reduced RPGSC is to minimize ppax(7) - gmax(7) (i-e., the
area of the large object).

The next problem is the strip packing problem in which small rectangles can be rotated

by 90°. This problem is formally described as follows.

Strip packing problem

input: The set of n rectangles ¢ € I with its width w; and height h;, and the
width W of the large object called strip.

output: The minimum height H of the strip such that all small rectangles are
packed in the strip without overlap, where each rectangle can be rotated
by 90°.

In the reduced RPGSC instance, each rectangle has two modes corresponding to its ori-
entations: (1) the original orientation and (2) the orientation rotated by 90°. For each

1=1,2,...,n, we set
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For each 1 =1,2,...,n and k£ = 1,2, we set

® +o0 (2 <0) o (k)(y) _ { +o0 (y <0)

Here, pmax(m) = 400 means the packing is infeasible and g ax(7) denotes the height of
the strip. The objectives of the reduced RPGSC is to minimize pmax(7) + Gmax (7).

The following example is the two-dimensional knapsack problem with rotation.

Two-dimensional knapsack problem

input: A set of small rectangles ¢ € I with its width w;, height h; and value ¢;,
and the two-dimensional knapsack with its width W and height H.

output: A subset I' C I of the rectangles with maximum total value ), ¢;
such that all rectangles ¢ € I' can be placed in the knapsack without

mutual overlap, where each rectangle can be rotated by 90°.

This problem is also polynomially reducible to RPGSC. Each rectangle has the following
three modes: (1) ¢ € I' with the original orientation, (2) 7 € I’ with the orientation after
90° rotation, and (3) ¢ ¢ I'. For each i =1,2,...,n, we set

wgl) = w;, hgl) = h;, cz( 0
w§2) = h;, h§2) = w;, 02(2) =0
wg?’) =0, hg?’) =0, cz(

For each:=1,2,...,nand k£ =1,2,3, we set

400 (x < 0) oo (y<0)
pM@ =20 <z<w-w) =0 ©0<y<H-—HY)
too (> W —u®), +oo (y> H—h").

Pmax(T) + qmax(m) = 0 (resp., = +00) means that all of the selected rectangles i € I’ are
placed in the knapsack (resp., there is at least one rectangle i € I' which is not placed
in the knapsack), and ), ; cl(»“i(ﬂ)) is the total value Eig[’ ¢; of the unselected small
rectangles. Note that, the maximization of ),/ ¢; is the same as the minimization of
Zig[' ¢;. Therefore, the objective of the reduced RPGSC instance is to minimize pyax(7)+
Grmax () + Sics Cgm(ﬂ)).

The last example for the rectangle packing problem is the two-dimensional bin packing

problem with rotation.
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Two-dimensional bin packing problem

input: A set of n rectangles ¢ € I with its width w; and height h;, and an
unlimited number of large objects (rectangular bins), having identical
width W and height H.

output: A partition of I into the minimum number k£ of disjoint subsets
Ii,I,...,I; such that all of the small rectangles ¢ € I; can be placed

in one rectangular object for each subset I;.

In the reduced RPGSC instance, each rectangle ¢ has two modes corresponding to its

orientation. For each 1 =1,2,...,n, we set

(1)

w: = w;, h

w® = h,, h

For each : =1,2,...,n and k = 1, 2, we set

,

+o0o (z<0)
1 (OSxSW—wgk))
+o0 (W—wgk)<m<W)
pi(2) = S (k)
+oo (2W —w;”’ <z <2W)
n (n—1)W <x§nW—w§k))
[ too (z >nW—w(k)),
(400 (y <0)
(k) _ p(k)
q; (y) <0 (OS'!/SH hi)
+oo (y>H — h(k))

If, pz(-k)(a:) is finite, it represents the index of the rectangular bin in which rectangle 7 is
placed and hence ppax(7m) becomes the number of bins used in the solution. The objective
of the reduced RPGSC instance is to minimize pyax(7) 4 ¢max (7).

These are a part of problems reducible to RPGSC and many other cutting and packing
problems can be reduced to our form. As we mentioned before, not only these problems
but also some scheduling problems are reducible to RPGSC. Now, we give two examples of
scheduling problems, called Scheduling-1 and Scheduling-2, and show that they are special
cases of RPGSC.

Scheduling-1 is the problem of scheduling n jobs to m parallel machines. A schedule

is determined by an assignment of jobs to machines and the start time of each job. For
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each job ¢, we are given a due date d; and a processing time t;; if it is processed on
machine k. A machine can process at most one job at a time, and the process of a job can
not be stopped during its processing time. Let C; be the completion time (i.e., the start
time plus the processing time) of job 7. Then the objective is to minimize the maximum
absolute difference max; |C; — d;| of the completion time from the due date. This problem

is formally described as follows.

Problem Scheduling-1

input: A set of n jobs i =1,2,...,n and m machines k = 1,2,...,m. Each
job ¢ has a due date d; and a processing time t;, if it is processed on

machine k.

output: An assignment of jobs to machines and the start time of each job

that minimizes max; |C; — d;|, where C; is the completion time of job .

Scheduling-1 is polynomially reducible to RPGSC by the following reduction. In the
reduced RPGSC instance, each rectangle has m modes, where mode k corresponds to

machine k. For each ¢ =1,2,...,nand k =1,2,...,m, we set

wEk) = tik, hEk) =1,
+oo <k
QIS (e <di—w?) By =140 Ey = k;
P :c—di—i-wl(k) (x > di—wl(k)), R v=
+oo (y > k).

(%)

./ (x) denotes the absolute difference of the completion time from the due date for

(k)

RPGSC instance is to minimize pyax(7T) + ¢max(7). In the solution of the reduced RPGSC

Here, p
job i and ¢;"’(y) means that y coordinate of job ¢ must be k. The objective of the reduced
instance, p;(m) represents the assignment of job i and z;(7) represents the start time of
job 1.

Scheduling-2 is a scheduling problem that arises in a factory producing large building
blocks. The blocks produced in the factory are very large, and, once the building block
is placed in the factory, it cannot be moved until all processes on the building block are
finished. Each building block 7 has a length [;, a processing time t;, a ready time s; and
a due date d;. As the shape of the work space is long and narrow, building blocks can be
regarded as one-dimensional objects. Blocks must be placed without overlap. A schedule
is determined by the place and the start time S; of each block i. Let C; be the completion
time of the process for block #; i.e., C; = S; + t;. Then the objective is to minimize the
maximum absolute difference max;{0,s; — S;,C; — d;}. The problem is summarized as

follows.
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Problem Scheduling-2

input: A length H of the whole work space and n building blocks I = {1,2,...,n},
where each building block ¢ € I has its length [;, processing time ¢;, ready

time s; and due date d;.

output: The place and the start time S; for each block ¢ so that the maximum
absolute difference max;{0, s; — S;, C; — d;} is minimized, where C; is the

completion time of the processes on block 2.

This problem is also polynomially reducible to RPGSC by the following reduction. In the
resulting RPGSC instance, each rectangle has only one mode. For each i =1,2,...,n, we

set

w =t h =1,
—x + 5 (x < si) +oo (y <0)
PV (@) =3 0 si<ez<di-u) "@=J0 (0<y<H-HY)
ctw) —d; (x> di—wV), too (y>H—hiM).
(k)

Here, p;" /() denotes the absolute difference from the given time window for block 7, and
the objective of the reduced RPGSC instance is to minimize pmax(7) + ¢max(7). In the
solution of reduced RPGSC instance, x;(m) represents the start time S; of processing

block i and y;(7) represents its place in the work space.



Chapter 3

Local Search Algorithms for
RPGSC

3.1 Introduction

In this chapter', we consider the rectangle packing problem with general spatial costs
(RPGSC), which is proposed in Section 2.4, and develop metaheuristic algorithms based
on local search.

As we mentioned in Chapter 2, if we search directly the z and y coordinates and
the mode of each rectangle, then an effective search will be difficult, since the number
of solutions is uncountably many and eliminating overlap of rectangles is not easy. To
overcome this, numerous coding schemes to represent solutions have been proposed [8, 21,
77, 90, 92].

In this chapter, we adopt the sequence pair representation [90] as the coding scheme in
our algorithm. A solution is coded as a pair of permutations of n rectangles and a vector
specifying the modes of all rectangles. Given a coded solution, we propose a decoding
algorithm based on dynamic programming to obtain an optimal packing (i.e., locations of
the rectangles that minimize the associated cost function) under the constraint specified
by the coded solution. This algorithm is a generalization of the algorithms proposed
in [105, 106] in that it can deal with general spatial costs. We propose another decoding
algorithm which slightly relaxes the constraints of a sequence pair and finds a packing
better than or equivalent to that obtained by our first algorithm. The running time of

these algorithms is O(nlogn) if applied to the case of the area minimization problem. We

'The results of this chapter appear in: S. Imahori, M. Yagiura, T. Ibaraki, “Local search algorithms
for the rectangle packing problem with general spatial costs,” Mathematical Programming 97 (2003) 543—
569, [63].
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also propose an encoding algorithm to obtain a coded solution from a given packing, which
runs in O(nlogn) time. This encoding algorithm is incorporated in our local search and
metaheuristic algorithms whenever our second decoding algorithm is used. The details of
these algorithms are described in Section 3.3

We then consider various neighborhoods in Section 3.4, which are used in the local
search algorithms for finding good coded solutions. We define the critical path (its def-
inition is not trivial as we consider general spatial cost functions), which represents the
bottleneck of the current solution, and propose a neighborhood based on critical paths.
We also use critical paths to reduce the sizes of other neighborhoods. The local search al-
gorithms based on these neighborhoods are then incorporated in metaheuristic algorithms
such as the multi-start local search (MLS) and the iterated local search (ILS).

The computational results are reported in Section 3.5. We compare the performance
of various implementations using different neighborhoods and metaheuristics. We also
compare our algorithms with other existing heuristic algorithms for the rectangle packing

problem and a real-world scheduling problem.

3.2 Sequence pair

As noted before, numerous coding schemes to represent solutions have been proposed [77,

90, 92]. Desirable properties of a coding scheme may be summarized as follows.

1. The size of the search space (i.e., the number of all possible coded solutions) is finite.
2. Every coded solution corresponds to a feasible packing.

3. Decoding (i.e., computing the corresponding packing from a coded solution) is pos-

sible in polynomial time.

4. There exists a coded solution that corresponds to an optimal packing.

Some of the coding schemes in the literature satisfy all of the above four properties, and
others do not. The sequence pair [90] satisfies the above four properties. In this scheme,
a coded solution is a pair of permutations of n rectangles and a vector that specifies the
modes of all rectangles. In this section, we briefly explain properties of the sequence pair
representation.

A sequence pair is a pair of permutations 0 = (04,0_) of I = {1,2,...,n}, where
o4 (1) = i (equivalently o' (i) = [) means that rectangle 7 is the /th rectangle in 0. o_ is
similarly defined. In a feasible packing 7, every pair 2 and j of rectangles satisfies at least
one of the four conditions from (2.4.4) to (2.4.7). A sequence pair determines which of the

four conditions is satisfied in the packing as follows. Given a sequence pair o = (oy,0_),
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we define the binary relations <% and =¥ by
(4)
(4)

for any pair ¢ and j of rectangles. Here, the following property holds.

o t(i) < o M(j) and -t (i) < 0Zl(j) =i <% j, (3.2.1)
o t(i) > o M(j) and -1 (i) < 0Z1(j) =i <Y j, (3.2.2)

Property 1 [90]: Exactly one of the four relations ¢ <% j, j <% 4,4 <Y j and j <¥ ¢ holds
for any pair ¢ and j of rectangles with ¢ # 7.

Then, given a sequence pair 0 = (04,0_) and a vector of modes 1 = (p1, po, ..., fyn), We
define Il ,, as the set of packings 7 that satisfy the following three conditions for all < and
jel:

pi(m) = pa, (3.2.3)
i <2 j = ai(r) +wl < (), (3.2.4)
i %Y= yi(m) + B < (). (3.2.5)

This means that any packing = € I, , is feasible (i.e., no two rectangles overlap each
other) and satisfies the mode constraint. Conversely, it can be shown that, for any feasible
packing 7, there exists a pair of o and p that satisfies m € Il ,. It is shown in [90] that
such a sequence pair o = (04, 0_) exists for any packing 7, without considering the time
complexity for obtaining it. The encoding algorithms in Subsection 3.3.3 (one of which

runs in O(nlogn) time) also give a proof of this fact.

3.3 Decoding and encoding algorithms

In this section, we consider the following problem for a given (o, u):

RPGSC (o, p): minimize 9(Pmax (), qmax (7)) (3.3.6)

subject to m e ll,,,

and propose a dynamic programming algorithm to compute an optimal packing 7 of
RPGSC(o, i) in polynomial time. For simplicity, we omit the superscript and subscript
(i (7))

representing the mode in Section 3.3 (e.g., we use w; and II, instead of w, and
I, ., respectively), since the mode p;(7) of each rectangle 7 is fixed when we consider the

decoding and encoding algorithms.

3.3.1 A decoding algorithm

By Property 1, we can obtain a feasible packing even if we determine the horizontal and

vertical coordinates separately. Moreover, since the objective function ¢(pmax(7), ¢max (7))
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is assumed to be nondecreasing in pmax(7m) and gmax(7), respectively, it can be minimized
by minimizing pmax(7) and ¢max(7) independently. We will give below an algorithm to
minimize Prax(7).

Let us define J! (f stands for forward) and fi(x) for each i as follows:

Ji={j€llj =51},
fi(x): the minimum value of max;e iy pj(xj(m)) subject to x;(m) + w; <
zj(m) for all 4,5 € JEU {i} with j # j' and j <2 j/, and z;(7) + w; < z.
We call f;(z) the minimum penalty function. This function is nonincreasing in = by the

definition, and the minimum penalty value ppax(7) of (2.4.2) can be obtained by

max min f;(z).
el oz

Then, by the idea of dynamic programming, f;(x) can be computed by

Ny, <z—w; Pi 1) f']f:wa
fi(z) = { m%n <o Pil) b , (3.3.7)
MiNg, <z w, max{pi(xi),maxjejif fj(x;)}, otherwise.
The horizontal coordinate x;(m) of each rectangle i can be computed by
max{; | pi(z;) = ming {pi(z}) | fi(2; + w;) = min, fi(2)}},
if JP =10,
zi(m) = _ _ " (3.3.8)
max{w; | p;(z;) = ming {pi(z7) | fi(2; + w;) = ming {f;(z) |z < ri}}},
otherwise,

where JP = {j € I|i =% j} (b stands for backward) and r; = minje ;b zj(m). We
can minimize ppax(7) with these horizontal coordinates, and moreover, we can minimize
pi(x;(m)) for all i locally.

In order to consider how to compute the above f;(z), let us define procedure Take-

Min-Max (g1, g2) and Take-Max (g1, g2) for two functions g; and go as follows.

Procedure: Take-Min-Max (g1,¢2)
Output function gimm(z) = ming<, max{gi(t), g2(t)} and stop.

Procedure: Take-Max (g1,92)
Output function gy, () = max{gi(x), g2(x)} and stop.

These two procedures are basic operations to compute f;(x), and can be obtained in
O(7, + 7) time in either case, where 71 and 75 are the space complexity (i.e., the number
of linear pieces) of functions g; and go, respectively. In case g; and g2 are nonincreasing,

output functions by these two procedures become the same (i.e., gymm(z) = gim(7)),
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and this condition is always satisfied when we call procedure Take-Max in our decoding
algorithms. Hence, we utilize procedure Take-Min-Max instead of Take-Max.

If we compute f;(z) by using (3.3.7) naively, we call procedure Take-Min-Max O(n?)
times since Y. | Jf| = O(n?). However, we propose here a decoding algorithm in which
we call procedure Take-Min-Max O(nlogn) times in total.

In order to compute f;(x) for each ¢ = 1,2,...,n, we should compute the function
max; ¢ fj(x;) in (3.3.7). We introduce a complete binary tree of height [logyn] with n
leaves. The leaves are labeled 1,2,...,n from left to right, where leaf [ € {1,2,...,n}
corresponds to rectangle o_(I). We define a function ff(z) for each I € {1,2,...,n} and
ke€{0,1,...,n} as follows:

k o fu;(l)(a:)) if 0—11(0——(1» <k,
fi(@) = { . £ oMo (1)) 2 b+ 1. (3.3.9)
Then, we can compute f;(x) of (3.3.7) from p;(z) and fF(x) since
max f;(z) = max{ff(z) |l < 07" (i) and k = o' (i) —1}. (3.3.10)

. f
Je‘]i

To compute this efficiently, internal nodes of the binary tree are labeled by distinct numbers
I>n+1suchasn+24n+2%+1,...,n+2%" —1 from left to right for all nodes whose
depths from the root node are d (i.e., the root node is labeled n + 1 and the maximum
number of node labels becomes n + 2(11°8271-1)) " Let T} be the set of leaf labels in the
subtree whose root node is I. We define a function flk(:z:) for each internal node [ and

ke€{0,1,...,n} as follows:

fi (@) = max ff (). (3.3.11)

We compute ff(z) and flk(:z:) from k = 1 to n step by step. Initially, f(z) = —oco and
f}o(a:) = —oo hold for all leaves and internal nodes. Now consider a k € {1,2,...,n}. First,
we will compute fF(z) for all leaves I. In this step, fF(z) = fF !(z) holds for each I such
that 07 '(0_(1)) # k, and hence we should compute only fl’i (z) such that o' (o_(l)) = k
(equivalently, I = o_'(o4(k))). To compute this, we define F¥(z). Let us initialize
F%(z) := —oo and then repeat the following step along the path in the tree from the root
to leaf o~ !(o4(k)) (we call this path RL-path, where RL stands for root to leaf): If the
path goes from node [ to its right child, then let F*(z) := Take-Min-Max ( Allf_l,Fk) (if
I’ is an internal node) or F¥(z) := Take-Min-Max (fF~%, F¥) (if I' is a leaf) for the left
child I’ of I. Finally, F*(z) becomes max{f(z)|l < cZ'(04(k)) } (see Figure 3.1 as
an example). This is equal to the right hand side of (3.3.10), and then we can compute
fi(z) (= flIZ(:I:)) by (3.3.7). Next, we will compute flk(:z:) for all internal nodes [. In this
step, flk(m) = Alk_l(a:) holds for each [ such that I, € T}, and hence we should compute
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root

Ty RL-path

e = o= (0 (k)

Figure 3.1: An example to compute F*(z)

only flk(m) such that I € T;, and this condition means that node [ is in RL-path. Then,

we compute fF(z) := Take-Min-Max ( Alkfl, fl’z) for all internal nodes [ in RL-path.

We call the above procedure to compute f;(x) for all i as algorithm Compute-Minimum-

Penalty-Function (CMPF), which is formally described as follows.

Algorithm: Compute-Minimum-Penalty-Function (CMPF)

Step 1: Make a complete binary tree of height [log,n] with n leaves. The
leaves are labeled 1,2,...,n from left to right and internal nodes are

labeled by distinct numbers more than n.

Step 2: Let f)(z) := —oco for all leaves, f’(z) := —oo for all internal nodes
and k := 1.

Step 3: (Compute F*(z) along RL-path.)
3.1: Let F*(z) := —oo and [ be the root node.

3.2: If l € {1,2,...,n} (i.e., leaf), then go to Step 4; otherwise let I* be
the child node of [ in RL-path.

3.3: If [* is the left child of I, let [ := I* and return to 3.2; otherwise let
FF¥(x) := Take-Min-Max (fllffl, F¥) (I': internal node) or Take-Min-
Max (f¥~1, F*) (I': leaf) for the left child I of I. Let [ := [* and
return to 3.2.
Step 4: Let fo, 1)(z) (= fl’;(x)) := Take-Min-Max (pg+(k),Fk).
Step 5: Let flk(:c) := Take-Min-Max (Alkfl,fl’z) for all internal nodes [ in
RL-path.

Step 6: If k£ = n, output f;(x) for all < and stop; otherwise let k£ := k + 1 and
return to Step 3.

Since procedure Take-Min-Max is called O(logn) times for each k (where O(logn) is the

height of the tree), the total number of calls to Take-Min-Max is O(nlogn).



3.3 Decoding and encoding algorithms 41

Now, we evaluate the time complexity of algorithm CMPEF. Let §; be the number of
linear pieces of p;(z), and let § = ). 6;. Since we are given the information of each linear
piece of functions p;(z) explicitly (see the assumption in Section 2.4), § becomes a lower
bound of the input size. We define 7 as an upper bound on the space complexity of
functions f;(z), and 7 also becomes an upper bound of ff(z) and flk(:z:) since f;(x) can be
computed from fF(z) and flk(m) (More details of 7 will be discussed in Subsection 3.3.2.)
Thus the time complexity of algorithm CMPF is O(rnlogn + 6).

3.3.2 Time complexity of the decoding algorithm

In order to derive the time complexity of the decoding algorithm in the previous section,
we first consider the space complexity of f;(x), flk (z) and flk (z). We consider the following
three cases.

(1) Cost function p;(x) satisfies the following property: There exists a d; that satisfies
pi(x) = +oo for x < d;, and p;(z) is nondecreasing for > d;. In this case, 7 becomes
O(1) and we can find an optimal packing from a given sequence pair in O(nlogn + 6)
time by algorithm CMPF. Many rectangle packing problems, such as those considered in
[58, 90, 92, 105, 106, 116], can be reduced to this case and furthermore satisfy 6 = O(n),
indicating that our algorithm CMPF runs in O(nlogn) time. This time complexity is the
same as those discussed in [105, 106].

(2) Cost functions p;(z) are convex for all 7. Then functions f/*(z) and flk(:c) become
convex, nonincreasing, and have negative gradients that also appear in cost functions p;(z).
Let £ be the number of different values among the negative gradients in all cost functions
pi(). In this case, the maximum space complexity of fff(x) and fAlk(:I:) is £+ 1, and hence
the time complexity of algorithm CMPF becomes O({nlogn + 6). In many applications,
6 = O(n) and £ can be regarded as a constant, and CMPF is quite efficient in such cases.

(3) Each p;(z) is general piecewise linear. That is, p;(x) can be non-convex and discon-
tinuous. In this case, the space complexity of each ff(z) and flk(a:) becomes O(6 a(6,6)),
where a(m,n) is the inverse of Ackermann function. (It is known that a(m,n) < 4 holds
for most realistic values of m and n.) The reason is explained as follows. ff(z) and flk (z)
can be represented as the maximum of some linear pieces of p;(x) and some pieces which
are parallel to z-axis. The pieces of the latter type can be generated in the process of
computing fF(z) and flk(a:) from some pieces of p;(xz) which have positive gradients or by
some discontinuous points of p;(x) which have positive gaps. The total number of linear
pieces of p;(z) is O(6) and the number of pieces parallel to z-axis is also O(8). Hence
the space complexity of flk(:z:) and flk(:c) is given by the space complexity of the upper
envelope of O(8) line segments, which is known to be O(6 «(é,6)) [4]. Therefore, the time
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complexity of algorithm CMPF is O(éa(é,6)nlogn). In many realistic cases, §; = O(1)
(i.e., 8 = O(n)) holds and «(6,6) can be regarded as O(1) as mentioned above, and hence
the time complexity of CMPF becomes O(n?logn).

Remark. The time complexity of algorithm CMPF depends on 6§ for all of the three
cases. Algorithm CMPF is a polynomial time algorithm under the assumption that the
information of each linear piece of function p;(x) is given explicitly. However, in general,
6 can be exponentially large if functions p;(z) are given implicitly, and in such cases, the
algorithm proposed by Ahuja, Hochbaum and Orlin [5, 6] is more efficient for Case 2
(i.e., cost functions p;(x) are convex for all ¢). Note that they consider a slightly different

problem and a careful transformation is necessary.

3.3.3 Transformation from a packing to a sequence pair

We propose an O(n log n) time algorithm to find a sequence pair o = (04, 0_) that satisfies
7 € Il, for a given packing (i.e., an encoding algorithm). This problem is independent of
the spatial cost functions.

Based on a packing m, we define binary relations <4 and <_ on I as follows:
(xi(m) < xj(m) + wj and y;(7) + h;y > y;(7)) =i <4 7, (3.3.12)
(xi(m) < xj(m) + w; and y;(7) < y;(m) + hj) =i <_ j. (3.3.13)
Figure 3.2 illustrates relationships < and <_ between nonoverlapping rectangles ¢ and j.

Relation ¢ < j (resp., i <_ j) holds if and only if the upper left (resp., lower left) corner

of rectangle i lies in the shaded area. Then let 0 = (04,0_) be a sequence pair that

(a) i <4 J (b)i<—j

Figure 3.2: Relationships between <, <_ and coordinates of rectangles

satisfies the following two conditions:

i =<y j = o7'(i) < o' (j), (3.3.14)

i <_j=o0"'(i) <o”'(j). (3.3.15)
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Then we have the following lemma.

Lemma 1: A packing 7 satisfies 7 € II, for any sequence pair o = (04, 0_) satisfying
conditions (3.3.14) and (3.3.15).

Proof: If nonoverlapping rectangles ¢ and j in m are comparable in both relations <
and <_, we note that exactly one of the four conditions (2.4.4)-(2.4.7) holds for ¢ and j.
For example, if ¢ <4 j and ¢ <_ j hold, then the locations of i and j satisfy z;(7) + w; <
zj(m) (see Figure 3.3 (a)). In this case, ¢ = (04,0_) satisfies o '(i) < ¢} '(j) and
o~ (i) < o=1(j) by (3.3.14) and (3.3.15), and 7 satisfies the implied condition (3.2.4) (i.e.,
zi(m) + w; < xj(m)). The case with j <4 7 and ¢ <_ j is similar (see Figure 3.3 (b)), and
7 satisfies the implied condition (3.2.5) (i.e., y;(m) + h; < yj(w)). If rectangles i and j
are comparable in exactly one of relations <4 and <_, two of the four conditions (2.4.4)—
(2.4.7) hold for 7 and j. For example, if ¢ and j satisfies ¢ <4 j but are not comparable
in <_ (i.e., i A= j and j A_ j), then both z;(7) + w; < z;(7) and y;(7w) + h; < y;(7)
hold (see Figure 3.3 (c)). In this case, ¢ = (0, 0_) satisfies o '(i) < o '(j) by (3.3.14)
but no restriction is imposed between o~ '(i) and ¢~'(j). However, since 7 satisfies both
the implied conditions (3.2.4) and (3.2.5) (corresponding to o~ '() < ¢_1(j) and 6~1(3) >
o='(j), respectively), m does not contradict with conditions (3.2.4) and (3.2.5). These

arguments prove that of 7 € I, holds. g

We first explain a simple O(n?) time algorithm to compute a sequence pair o = (o4, 0_)

(a) i <4 jand i <_ j (b)i<4+jand j <1 ()i <47

Figure 3.3: Relationships between packing 7w and relations <, <_

satisfying (3.3.14) and (3.3.15) for a given packing , since the O(nlogn) time algorithm
is based on it. We describe only the case of o4 as the algorithm for o_ is similar. We
define sets I'* = {j|j <1 i} and I’B = {j|i <4 j} (LA (resp., RB) stands for left above
(resp., right bottom)). Then, it is obvious that j € I* =i € IJRB and IMA N IRB = ().
For any subset S C I, at least one rectangle ¢ satisfies IiLA NS = 0 (implying that no j € S

satisfies j <4 i). The O(n?) time algorithm to compute a permutation o is formally
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described as follows.

Algorithm: Packing-to-Sequence-Pair-1 (P2SP-1)

Step 1: Compute IiLA for all rectangles ¢ € I. Let S:=1 and [ := 1.

Step 2: Choose a rectangle i such that SN I* = (. Let o,(l) := i and
S =5\ {i}.

Step 3: If S = (), then output o4 and stop; otherwise let [ := [+ 1 and return
to Step 2.

The time required in Step 1 is O(n?). To find an i satisfying S N I** = 0 in O(n) time
in Step 2, we keep the values of |S N I]LA| in memory for all 7 € S. Such data can be
maintained if we decrease |S F‘lIJLA| by one for each j € SN IRB after i is removed from S.
The loop of Steps 2 and 3 is repeated n times; hence the total time complexity is O(n?).

Now, we improve the above algorithm into an O(nlogn) time algorithm. First, we

define the set I C I (L stands for left) for each i € I as follows:

j €I} <= xj(m) + w; < xi(m),yj(m) — hi < yi(m) < yj(7) + hj and the line segment
((zj(m) + wj,y), (x;(7),y)) does not cross any rectangle in I, for some y
satisfying max{y;(7),y;(7)} <y < min{y;(7) + hi,y;(7) + h;}.

Note that we permit that the line segment ((x;(7) + wj,y), (z;(7),y)) has length 0. Fig-

ure 3.4 illustrates set I and locations of rectangles (ja,54 € IF and jy,753 € IF). We also

J3

J2
J1 i

Ja

Figure 3.4: A relationship between set I” and locations of rectangles

define IiR, IZB and IZA similarly, where labels R, B and A stand for right, below and above,
respectively. The sets IiL, IiR, IZB and IiA can be computed for all ¢ € I in O(nlogn) time
by using the well-known plane sweep technique [9].

Though plane sweep is a standard technique, we explain its outline to show Ziel(|jz'L| +
[I}| + |IB] + |I*]) = O(n). To compute I} for all i, we consider a sweep line parallel to

the z-axis and move it from bottom to top. Let () maintain the set of rectangles located
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on the sweep line during the sweep process. A rectangle ¢ is inserted into (resp., deleted
from) @ when the y-coordinate of the sweep line becomes y;(m) (resp., y;(7) + h;), hence
set @ changes 2n times. Note that, if y;(7) = y;(7) + h; holds, we understand that j is
deleted from @ before 7 is inserted into Q. IZ»L is initially set empty for all ¢ € I. When 1
is inserted into @, we find the rectangle " (resp., i) in @ immediately to the left (resp.,
right) of ¢ on the sweep line, and let I := I U{i"} and Igf{ = Iilﬁ U{i}. When i is deleted
from Q, we find the rectangle i (resp., i%) in Q immediately to the left (resp., right) of i
just before 7 is deleted, and let IZ_I;{, = Iilﬁ, U {iL’}. (Some of &, % " and i® may not
exist. In such cases, the corresponding operations are omitted.) For each pair of 7 and j
such that j € IT, rectangle j becomes immediately to the left of rectangle i on the sweep
line at least once. We set IZ»L = IZ»L U {j} when j becomes immediately to the left of 7 for
the first time; hence we can find all rectangles j € IZ-L for each ¢ with these operations.

In the above process, note that ), |IZL| increases at most 2 whenever @) is changed,
and hence Y. |IF| = O(n). Thus the complexity to compute I for all i is O(nlogn),
since ) can be updated in O(logn) time when ¢ is inserted and deleted, respectively, if an
appropriate data structure such as the balanced search tree is used to keep @ [9]. Similarly,
each of 3. |IF|, 3. [IB| and Y, |[I*] is O(n), and the time complexity of computing I},
IB and I? for all i is O(nlogn).

Let us consider relationship between IZ-LA and IiL, IZ-A. Given a set S C I, our objective
is to find a rectangle ¢ satisfying IZ-LA NS =0. Let SE7A be the set of rectangles 1 € S
such that (IF UTA) NS = ( (for any subset S C I, at least one rectangle i satisfies
(IFUIA)NS =0), and let 2(i) = a-y;(m) — B-x;(7) for all i € I (o and (3 are nonnegative
constants such that at least one of them is positive). Then, IZ-LA NS =0 holds if i € SE7A
and z(7) > z(j) holds for all j € SE,A- The algorithm to compute a permutation o in

O(nlogn) time is now described as follows.

Algorithm: Packing-to-Sequence-Pair-2 (P2SP-2)

Step 1: Compute I, I}, IB, I and z(i) for all rectangles i € I.

Step 2: Let S:=1 and [ := 1. Compute SE7A'

Step 3: Choose a rectangle ¢ € SEA with the largest z(7). Let o4 () := ¢ and
S:= S\ {i}. Update SE,A'

Step 4: If S = 0 holds, then output o and stop; otherwise let [ := 1+ 1 and
return to Step 3.

As mentioned above, Step 1 is possible in O(nlogn) time by using the plane sweep tech-
nique. In Step 3, we choose a rectangle i with the maximum z(i) among Sy , and delete

it from S and SE7A' This is possible in O(log n) time if we use the data structure of heap
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to keep SE,A' We keep the values of |(IJL U IJA) N S| in memory for all rectangles j and
decrease |(I]L U IJA) N S| by one for each j € (IRUIP) NS after i is removed from S in
Step 3. Since > ,; (I} +|1%]) is O(n), this task of updating |(I]L UIJA) N S| can be done
in O(n) time in total. Each rectangle 7 is inserted into SE,A only once when |(IFUTA)N S|
becomes 0; hence the number of insertions (and deletions) is O(n), and an insertion to
SE,A is also possible in O(logn) time. In summary, the total computational time of this

algorithm is O(nlogn).

3.3.4 Another decoding algorithm

In this section, we describe algorithm Compute-Better-Packing (CBP), which computes a
packing 7 from a given sequence pair o. Although the packing m computed by CBP may
not satisfy = € Il,, it is not worse than any packing in I, in terms of the objective value.
Note that, Nagao et al. [91] proposed a decoding algorithm which has similar properties to
ours, i.e., computes a better or equivalent packing 7 than any packing which satisfies all the
given constraints on relative locations of a sequence pair o. Their algorithm, however, is
specialized to the area minimization problem, and our algorithm utilizes different strategies
to it. While algorithm CMPF in Subsection 3.3.1 computes the = and y coordinates of all
rectangles independently, CBP computes the coordinates of one direction first, and then
computes the coordinates of the other direction on the basis of the first coordinates. We
assume here that CBP computes the y-coordinates first, since the other case is similar.

0

First we define a packing 7°. The y-coordinates of rectangles in 7% are determined by

applying algorithm CMPF, while the z-coordinates are given by

zo_(1)(7") =0, (3.3.16)
ajgi(l)(ﬁo) = ajgi(l_l)(ﬁo) + We_ (1-1); [=2,3,...,n. (3.3.17)

The obtained packing 70 is in IT, and gmax(7°) < gmax(7) holds for all 7 € II,. Then, we

compute a packing 7 that minimizes ppax(7) among those satisfying
j eI = xj(r) +w; < a;(7) for all i € I, (3.3.18)

where I (see the previous subsection for the definition) is defined on 7° and y;(7) = y;(7°)
holds for all i € I. Since j € I¥ = j <% 4 holds for all 7 and j, constraints (3.3.18) are not
stronger than (3.2.4). That is, the feasible region of the problem considered here contains
that of RPGSC(o, ). Hence, pmax(7) obtained by CBP is not worse than that obtained
by CMPF. Let us define f;(x) as follows:

filx) =

) { Ming, <o, pi(7i), if I =0, (3.3.19)

ming; <g—w; max{p;(x;), max;e L fj(wz)}, otherwise,
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and the minimum penalty value ppax(7) can be obtained by

Pmax(7™) = max min f;(z). (3.3.20)
el z

The horizontal coordinate z; of each rectangle ¢ can be computed by the similar com-
putation to (3.3.8) as explained in Subsection 3.3.1. As we mentioned in the previous
subsection, >_.|IF| = O(n) holds, and hence procedure Take-Min-Max is called O(n)
times in the recursion of (3.3.19).

The packing 7 computed by algorithm CBP may not satisfy = € II,, where o is the
sequence pair to which CBP is applied. In this case, we can find a sequence pair ¢’ which
satisfies m € II,» in O(nlogn) time by applying the encoding algorithm P2SP-2 proposed
in the previous section to 7. In our computational experiments, we will apply algorithm
P2SP-2 to a packing 7, whenever it is computed by CBP and is better than the current
packing, so that the local search can resume from a sequence pair o’ satisfying © € II,.

The time complexity of algorithm CBP (even if the encoding algorithm is included) is
bounded by the time to call Take-Min-Max O(nlogn) times to compute the y-coordinates
first, which is the same as that of CMPF.

3.4 Local search of coded solutions (o, i)

In this section, we propose metaheuristic algorithms to find good coded solutions (o, ).
As metaheuristic algorithms are based on local search, we explain the general frame-
work of local search in Subsection 3.4.1. After giving the definition of critical paths in
Subsection 3.4.2, we explain four types of neighborhoods based on critical paths in Sub-
section 3.4.3. In Subsection 3.4.4, we explain frameworks of the proposed metaheuristic

algorithms.

3.4.1 Local search

The local search (LS) starts from an initial solution (o, 1) and repeats replacing (o, 1) with
a better solution in its neighborhood N (o, p) until no better solution is found in N (o, p),
where N (o, p) is a set of solutions obtainable from (o, ) by slight perturbations (which
will be defined later). A solution (o, p) is called locally optimal, if no better solution exists
in N(o, ). The LS from an initial solution (¢(®), (9)), in which neighborhood N is used

and solutions are evaluated by a function eval, is described as follows.

Algorithm: LS(N, (6(©, u(9)))

Step 1: Let 0 := 0(® and p := p(9.
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Step 2: If there is a feasible solution (¢/, u') € N (o, p) such that eval(o’, p') <
eval(o, i), let o := o', p := p' and return to Step 2. Otherwise output
(o, 1) and stop.

The following ingredients must be specified in designing LS: Search space, neighborhood,
move strategy, an initial solution and a function to evaluate solutions. The search space
of our algorithm is the set of all coded solutions (o, ). We adopt first admissible move
strategy (i.e., when we find a better solution in its neighborhood, we move to the solution
immediately). A solution (o, p1) is basically evaluated by the objective value of the packing
7 obtained by algorithm CMPF in Subsection 3.3.1 or algorithm CBP in Subsection 3.3.4.

However, to break ties, we compute the following three values:

1. Objective value g(pmax(7), ¢max(7)) + c(p(7)),

2. the number of rectangles i for which pz(-“i(w))(:z:i(w)) = Pmax(T) or qz(“l( ))(yi(ﬂ'))

= qma.x(”'r) holds,
3. 20 (@i(m) + ¢ (gi(m))).

In each criterion, a packing which has smaller value is better. We define eval(co, 1) as the
vector of these three values in this order, and use the lexicographic order of eval(o, i) to
compare two solutions (i.e., criterion 2 is used when solutions are equivalent in criterion

1, and criterion 3 is used when solutions are equivalent in criteria 1 and 2).

3.4.2 Critical paths

Critical paths are defined for both of the z and y directions. We explain the definition
only for the = direction, as that for the y direction is similar. Given a packing 7 € 1l, ,,
define a directed graph G = (V, E) and subsets S, T, P C I as follows:

V=T,
(i,)) € E <= x;i(m) + w, (ui(m) = = zj(m) and i < 7, (3.4.21)
S ={i€I|pi(xi(m) —€) > pmax(m) for an arbitrarily small e > 0},

T = {i € I'|pi(xi(m) + €) > pmax(m) for an arbitrarily small € > 0},

()
P = {i € I'lpi(zi(m)) = Pmax(7)}.

We then define a critical path as a directed path in G, whose initial vertex s is in S,
final vertex t is in 7' and at least one vertex v € P exists in this path (including the
end vertices). For any packing 7 obtained by our decoding algorithms, S, T and P are
nonempty and there is at least one critical path for each direction. Critical paths have an

important property: pmax(m) cannot be decreased without breaking all critical paths of
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the x direction. Therefore we introduce neighborhoods, which are based on critical paths,
in the next subsection.

Now, we consider an algorithm to compute critical paths. It is easy to find all pairs of
rectangles which are adjacent on critical paths in O(n? + §) time with a simple algorithm.
Here, we propose an algorithm to find critical paths for horizontal direction which runs

faster than the simple one. An outline of our algorithm is described as follows.

Algorithm: Find-Critical-Paths-x

Step 1: Compute the sets S,T and P.
Step 2: Construct the directed graph G = (V, E) of (3.4.21).
Step 3: Find critical paths on G = (V| E).

We consider each step and analyze its time complexity. In Step 1, we compute p(“i(w))(xi)

(ui(m)) '

i

and the gradient of p
(pi(m))

)

(x) at x; for all 4 € I. If x; is an end point of a linear segment of
function p (z), we check both segments which have end point z;. It takes O(¢;) time
to compute this for ¢ € I. Hence, the total computation time for Step 1 is O(6). Next, we
consider Step 2. It is easy to construct G = (V, E) in O(n?) time, since condition (3.4.21)
can be checked in O(1) time for each pair ¢ and j of n rectangles. A directed graph has
O(n?) edges in the worst case; however, there are much less edges in G in general. We
propose algorithm Construct-Directed-Graph (CDG) to construct G = (V, E) much faster
than O(n?) time in practice.

This algorithm is based on hashing. We define a set 2, as the rectangles ¢ such that
xi(m) + wz(“i(w)) = x. Then, for each rectangle i, we check whether Q) = @ or not by
using the hash table. If Q) # 0 holds, we check for each j € Qq;(x) whether j <74
holds or not and output necessary edges accordingly. We use the balanced binary search
tree to keep the set @), to enumerate those j satisfying j <% ¢ efficiently, where the key of

the binary search tree is Uzl(j). The algorithm is formally described as follows.

Algorithm: Construct-Directed-Graph (CDG)

Step 1: Set [ := 1 and prepare an empty hash table (i.e., set Q. := 0 for
all x).

Step 2: Set i:= o (l).

Step 3: Execute “member x;()” to the hash table to check if Q,, () is empty
or not. If Qu;(x) # ) holds, go to Step 4; otherwise go to Step 5.

Step 4: Output directed edges (j,i) for each j € Q;(x) such that o 1(j) <
o~'(i) holds.
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Step 5: Insert xi(w)—l—w(“i(w)) into the hash table. Then we set Q := Q. U{i}

)

for x = -'Ez(ﬂ') + wgllz(ﬂ'))

Step 6: If [ = n holds, stop; otherwise set [ := [+ 1 and return to Step 2.

We analyze the running time of algorithm CDG. Since the number of insertions is n,
we set the size of the hash table to 2n as suggested in [73]; hence Step 1 is possible in O(n)
time. For simplicity, we assume that the insertion and member operations for the hash
table are possible in O(1) time. Then the member and insertion operations in Steps 3 and 5
are possible in O(n) time in total. Step 4 (for a fixed 7) is executed by first inserting ¢ into
the binary search tree, then output all j € Q,(,) satistying O’:l(j) < O’:l(i) by using the
inorder traverse of the tree, and finally deleting ¢ from the tree. This takes O(logn + |E;|)
time, where 7 is the maximum size of Q. (hence n < n holds) and F; is the set of edges
(7,i) output in Step 4 for a fixed i. Therefore, algorithm CDG runs in O(nlogn + |E])
time in total.

Now, we consider Step 3 of algorithm Find-Critical-Paths-x. We can find all pairs of
rectangles adjacent on critical paths by tracing the resulting directed graph. This can be
executed in O(|V] + |E]) time.

In summary, the total time requirement of algorithm Find-Critical-Paths-x is O(é +
nlogn + |E]). In many cases, § = O(n), n = O(1) and |E| = O(n) hold, and hence the

time complexity becomes O(n) in practice.

3.4.3 Neighborhoods

The neighborhood is a very important factor that determines the effectiveness of local
search. We use the following four types of neighborhoods, called swap, shift, swap* and

change mode.

Swap neighborhood

A swap is the operation of exchanging the positions of two rectangles 7 and j in o4 and/or
o_. If a swap is applied to one (resp., both) of oy and o_, then the operation is called
a single swap (resp., double swap). The single swap (resp., double swap) neighborhood is
defined to be the set of all solutions obtainable from the current solution by single swap
(resp., double swap) operations. The swap neighborhood is the union of the single swap
and double swap neighborhoods. The size of the single swap neighborhood is n(n — 1)
(there are n(n —1)/2 pairs of rectangles and two permutations), while that of double swap
neighborhood is n(n —1)/2. The double swap neighborhood has the following property: If

two rectangles ¢ and j are exchanged in both of o and o_, the constraints related to the
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binary relations <% and =<9 of these two rectangles are entirely exchanged. We propose
three methods to reduce the size of swap neighborhood, which will be computationally
compared in Subsection 3.5.4. We call the swap neighborhood without any reductions as
SwapAll.

(1) We impose the condition that one of the two rectangles i in the swap operation
satisfies pgui(w))(mi(w)) = Pmax(T) or qgﬂi(w))(yi(w)) = Gmax (7). We call this neighborhood
SwapMax. The size of SwapMax is extremely small, and the possibility of missing some
improved solutions in the original swap neighborhood appears to be high.

(2) Critical paths are used to reduce the neighborhood size. In a swap of i and j, the
critical paths containing neither ¢ nor j will not be broken (and the objective value does
not decrease). We therefore choose at least one rectangle in a swap from those rectangles
on critical paths of either direction. Then, the size of the neighborhood is reduced from
O(n?) to O(cn), where c is the number of rectangles on critical paths.

(3) This method can only be applied to the double swap neighborhood. We restrict the

pairs of rectangles ¢ and j to those satisfying at least one of the following two conditions:

e ¢ is on the critical path of x direction and j is not, and wgm(w)) > wg-“j(ﬂ)) holds.

e ¢ is on the critical path of y direction and j is not, and hg“i(ﬂ)) > hgﬂj(w)) holds.

The second and third methods have the following property: The current solution is
locally optimal (with respect to the objective value) in the original swap neighborhood if no
improved solution is found in the reduced neighborhood. In this sense, we can reduce the
size of swap neighborhood without sacrificing the solution quality. In our computational
experiments, we use the union of two neighborhoods, the single swap neighborhood reduced
by method (2) and the double swap neighborhood reduced by method (3), and we call
this SwapCri.

Shift neighborhood

A shift is the operation of shifting the position of one rectangle ¢ into another position in o
and/or o_. If the position is changed in one permutation (resp., both permutations), we
call it a single shift (vesp., double shift). The single shift (resp., double shift) neighborhood
is defined to be the set of all solutions obtainable from the current solution by single shift
(resp., double shift) operations. In the case of the double shift neighborhood, we limit
the positions, where the shifted rectangle is inserted, to those determined by the following
rule. Let 7 be the rectangle to be shifted. Then we choose one rectangle j (# i) arbitrarily
and insert ¢ before or after j in both o4 and o_. Intuitively, in the packing space, we

move rectangle ¢ to the position just to the left of, right of, above or below the chosen
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rectangle j by these restricted operations. The shift neighborhood is the union of these
two neighborhoods, and the size of this neighborhood is O(n?). We call this neighborhood
Shift All

We restrict further the rectangles to be shifted by the following rules, which will be
computationally compared in Subsection 3.5.4

(1) We restrict the rectangles i to those satisfying pgm(w))(:ri(w)) = Pmax(T) or
qgﬂi(w))(yi(w)) = Gmax(7). We call this neighborhood ShiftMax.

(2) We shift only those rectangles located on critical paths. We call this ShiftCri.

Swap* neighborhood

A swap* operation breaks a critical path while preserving the relations <% and <% between
other rectangles as much as possible. We explain a swap* operation only for the = direction.
It removes two rectangles ¢ and j, which are adjacent on the horizontal critical path, from
o4 and/or o_, and inserts them into adjacent positions (but in the reverse order) of o

and/or o_ between the original positions of 7 and j (see Figure 3.5 for illustration). This

’
— 04

Figure 3.5: An example of changing o to o/, with a swap* operation

operation is formally defined as follows. Here, only the case of changing o, to ¢/, is
explained. The operation on o_ is similar. Let us assume that rectangles ¢ and j are
adjacent on a critical path, and o4 (a) = ¢ and o4 (8) = j hold in the current solution.
Let v be an integer that satisfies & <~ < 3. Then, the resulting permutation o/, is given
by (see Figure 3.5):

=o(l+1),l=a,...,v—1,

=0y (),l=1,2,...,a—1,4+1,...,n.

Then, we can change from a packing in Figure 3.6 (a) to a packing in Figure 3.6 (b)

with a swap* operation on ¢ and j. We consider all possible ¢ and j, and all v satisfying
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< ’ J
7 * 7
(a) 1 25 j (b)i=5i

Figure 3.6: An example showing the effect of a swap* operation

a < v < 3; hence the neighborhood size is O(n?) in the worst case. In practice, however,

the average size appears to be much smaller. We call this neighborhood Swap*.

Change mode neighborhood

The change mode neighborhood is the set of solutions obtainable from the current coded
solution (o, ) by changing the mode p;(7) of one rectangle 7. This is the only operation
applied to the vector pu. The size of this neighborhood is ) (m; — 1) where m; is the

number of modes of rectangle 1.

Combination of some neighborhoods

It is often effective to combine more than one neighborhood. In the computational exper-
iments of Section 3.5, we use a combination of SwapCri, ShiftMax and Swap®*, which is
called Union. Moreover, we use the change mode neighborhood in combination with other
neighborhoods whenever we treat a problem in which each rectangle has more than one
mode, since this is the only operation applied to the mode vector ;. When we use more

than one neighborhood, we use them in random order in our computational experiments.

3.4.4 Metaheuristics

We explain three metaheuristic algorithms, all of which are based on local search. These
will be used in our computational experiments in Section 3.5. Computation of these
algorithms continues until the prespecified computational time is reached.

(1) The random multi-start local search (MLS) [70]: This is one of the simplest meta-
heuristic algorithms. In MLS, we randomly generate many initial solutions and apply
LS to each initial solution independently. Then, the best of the obtained locally optimal

solutions is output.
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(2) The iterated local search (ILS) [68]: ILS is a variant of MLS, in which initial
solutions are generated by slightly perturbing a good solution (cgeed, piseeq) found during
the previous search. In our ILS, (0geed, ftsced) 1S defined to be the best solution obtained
so far with respect to function eval. The next initial solution is then generated from
(Oseeds Mseed) DY applying swap, shift or change mode operations a few times randomly.

(3) The algorithm WALK is similar to algorithm WALK-SAT [103] proposed for the
satisfiability problem. We define neighborhood N (o, i, i) for a coded solution (o, ) and a
rectangle i as follows: N (o, %) is the set of solutions obtainable from (o, p) by applying
swap, shift, swap* or change mode operation to rectangle . In WALK, we first choose a
rectangle ¢ randomly from those on the critical paths, and then choose the best solution
(¢',u1') in N(o,p,i) \ {(o, 1)} and move to (o', p') (ie., let (o,u) := (o', 1)) even if the
eval of (o', u') is worse than that of (o, u).

3.5 Computational experiments

In this section, our algorithms are evaluated on some instances of the rectangle packing and
scheduling problems. The algorithms were coded in C language and run on a handmade
PC (Intel Pentium IIT 1 GHz, 1 GB memory).

We describe test instances in Subsection 3.5.1. In Subsections 3.5.2 and 3.5.3, we
examine the performance of our decoding algorithms proposed in Subsections 3.3.1 and
3.3.4, and encoding algorithms in Subsection 3.3.3. We then report computational results
of local search with various implementations using different neighborhoods in Subsection
3.5.4. Computational results of various metaheuristic algorithms are reported in Subsec-
tion 3.5.5. In Subsection 3.5.6, we compare our algorithms with other existing heuristic

algorithms for both the rectangle packing problem and the scheduling problem.

3.5.1 Test problems and their instances

We explain two problems and their instances, which are used in our computational ex-
periments. The definitions of these problems have already been given in Subsection 2.4.2,
however, we explain them again for readability. All instances can be obtained electronically

from http://www-or.amp.i.kyoto-u.ac.jp/ imahori/packing/.

The area minimization problem

We are given a set of n rectangles I = {1,2,...,n}, where each rectangle i € I has a
width w; and a height h;. The rotations of 90° are allowed and the objective is to minimize

the area of the rectangular bin (large object) that contains all given rectangles. This
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problem was considered in many papers including [90, 92, 105, 106]. In our formulation

as RPGSC instances, each rectangle has two modes corresponding to its orientations: (1)

the original orientation and (2) the orientation after 90° rotation. For each i = 1,2,...,n,
we set

w = wy, WY = b,

w§2) = h;, hz(-2) = w;.
For:=1,2,...,n and k£ = 1,2, we use

(k) \ _ ) T (z <0) k), « |} +oo (y < 0)
E (a:)_{”“rwz(k) (>0), " (y)_{y > 0).

The objective of the resulting RPGSC instance is to minimize pypax(7) * ¢max(7) (i.e., the

area of the large object that covers all given rectangles).

We use five instances of this problem: ami49, rp100, pcbl146, rp200 and pcb500.
The first instance ami49 has 49 rectangles, whose data are obtainable electronically from
http://www.cbl.ncsu.edu/CBL Docs/1lys90.html. Instances rpl00 and rp200 were ran-
domly generated, and have 100 and 200 rectangles, respectively. The generation was done
by randomly choosing integers from [1,100] for widths and heights of rectangles. Instances
pcb146 and pcb500 were given by Kajitani [90, 92]. These instances have 146 and 500
rectangles, respectively. Since the optimal solutions of these instances are unknown, we

use the sum of the areas of n rectangles as a lower bound of the objective function.

The scheduling problem of large building blocks

This is a scheduling problem that arises in a factory producing large building blocks. The
blocks produced in the factory are very large, and once the building block is placed in the
factory, it cannot be moved until all processes on the building block are finished. Each
building block 7 has a length [;, a processing time t;, a ready time s; and a due date d;.
As the shape of the work space is long and narrow, building blocks can be regarded as the
one-dimensional objects. Blocks must be placed without overlap. A schedule is determined
by the place and the start time S; of each block ¢. Let C; be the completion time of the
process for block 7; i.e., C; = S; + t;. Then the objective is to minimize the maximum

absolute difference max{0, s; — S;, C; — d;}.

This problem can also be formulated as RPGSC, in which each rectangle has only one
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mode. Fori=1,2,...,n, let

w =1, h =1,
—x + s; (x < s;) +oo (y <0)

P =10 si<e<di-u) "@=40 (©O<y<H-H)
m—l—wgl) —d; ($>di—w§1)), +00 (y>H—h§1)),

where H is the length of the factory. The objective is to minimize ppax(m™) 4+ Gmax (7).
In this RPGSC formulation, the x-coordinate corresponds to time and the y-coordinate
represents the positions of blocks. Given a packing , x;(7) represents the start time S;
and y;(m) represents the bottom edge of the position of block .

We use five test instances sp78, sp50-a, sp50-b, sp100-a and spl100-b, where sp78 is a
test instance from a real world application with 78 building blocks, and sp50-a, sp50-b,
sp100-a, sp100-b are random instances that have 50 and 100 building blocks, respectively.
It is known that there is a schedule with objective value 0 for every instance (i.e., no

violation of constraints with respect to ready time, due date and work space for all building

blocks).

3.5.2 Decoding algorithms

In this section, we examine the performance of our decoding algorithms proposed in Sub-
sections 3.3.1 and 3.3.4. We compare three algorithms: (1) an O(7n? 4 §) time naive
algorithm in Subsection 3.3.1 (denoted NAIVE), (2) algorithm CMPF in Subsection 3.3.1
whose time complexity is O(7nlogn+¢) and (3) algorithm CBP in Subsection 3.3.4 whose
time complexity is the same as CMPF. Each algorithm is applied to the xz-coordinate only.
Note that we compute the y-coordinates of rectangles before applying CBP, since CBP can
compute the z-coordinates in O(nlogn+ 7n+ §) time by making use of the y-coordinates
of rectangles. We tested instances of several sizes and several cost functions. Results are
shown in Table 3.1. The figures in the table show the computational time to obtain a
packing from a given coded solution. Column “n” shows the size of instances and column
“cost type” shows the type of cost functions. The type “special” means that all rectangles
have cost functions described in Subsection 3.3.2-(1) (i.e., 7 is O(1)), and “general” means
that rectangles have general cost functions, each with a few segments.

From Table 3.1, we can observe that algorithms CMPF and CBP are more efficient
than NAIVE. Moreover, CBP is faster than other algorithms for the instances with general
cost functions, while it is about three times as slow as algorithm CMPF for the instances
with special cost functions. The reason is as follows: CBP can have a larger coefficient

on the nlogn term than CMPF, if 7 is a small constant, since CBP uses the plane sweep
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Table 3.1: Computational time of the decoding algorithms in seconds

n  cost type NAIVE CMPF CBP

49  special  5.04 x107° 1.90 x10™° 6.41 x107°
100 special  2.21 x107% 4.56 x10~> 1.55 x10~*
146  special  4.56 x10~* 6.92 x10™° 2.34 x10~*
200  special  9.67 x107* 9.61 x107° 3.27 x10~*
500 special  5.63 x107* 3.65 x107* 1.21 x1073
49  general  4.53 x10~* 1.85 x107% 1.42 x10~*
100  general 2.11 x1073 4.33 x10~* 3.46 x10~*
146  general 4.24 x107% 9.51 x10~* 5.87 x10~*
200 general 1.03 x107? 1.27 x10~% 8.85 x107*
500 general 5.97 x1072 6.13 x1073 4.69 x1073

Table 3.2: Quality of solutions of the decoding algorithms

CMPF CBP
instance value  time value  time
amid9 93.37 1.44 93.30 2.20
rpl100 94.06  15.47 94.85  27.04
pcb146 91.38  22.29 94.10  38.18
rp200 94.98 174.6 95.76  410.1
pcb500 93.49 3600.0 94.40 3600.0

algorithm, whose computational time is O(nlogn), while CMPF does not. Here we em-
phasize that CBP is faster than CMPF even if the above general cost function on each
rectangle has only a few segments. We also examined the performance of our decoding
algorithms with respect to the quality of solutions. We use five test instances of the area
minimization problem: ami49, rp100, pcb146, rp200 and pcb500. Algorithms CMPF and
CBP are incorporated in the local search algorithms, and results are shown in Table 3.2.

Column “value” shows the average of the following ratio,

100 x (the lower bound of the objective function)

(the objective value of the local optimum)

for ten trials (i.e., the larger the better). Column “time” shows the average computational

time (in seconds) of local search algorithm LS. These notations are also used in Tables



58 Local Search Algorithms for RPGSC

3.3, 3.4 and 3.5. Note that we use neighborhood Union (defined in Subsection 3.4.3) in
each LS. From Table 3.2, we can observe that CBP is superior to CMPF in quality for
many instances. Based on these results, we will use CBP as our decoding algorithm in the

experiments of Subsections 3.5.4, 3.5.5 and 3.5.6.

3.5.3 Encoding algorithms

We compared two algorithms (1) P2SP-1 (an O(n?) time encoding algorithm) and (2)
P2SP-2 (an O(nlogn) time encoding algorithm) proposed in Subsection 3.3.3 by applying
them to various instances in Subsection 3.5.1. The detailed results are omitted, but we
could observe a significant speed up of P2SP-2 even for small instances such as ami49.
Therefore we exclusively used P2SP-2 in the experiments in Subsections 3.5.4, 3.5.5 and

3.5.6.

3.5.4 Neighborhoods

The following eight types of neighborhoods discussed in Subsection 3.4.3 were computa-
tionally compared from the view point of the performance of the resulting local search
algorithms LS, on test instances of the area minimization problem in Subsection 3.5.1.

e SwapAll (the swap neighborhood).

e SwapMax (a reduced swap neighborhood).

e SwapCri (the other reduced swap neighborhood).

e ShiftAll (the shift neighborhood).

e ShiftMax (a reduced shift neighborhood).

e ShiftCri (the other reduced shift neighborhood).

e Swap* (the swap® neighborhood).

e Union (the combination of SwapCri, ShiftMax and Swap*).
Note that the change mode neighborhood is incorporated in all of the above eight cases.

Local search algorithms LS halt only when locally optimal solutions are obtained. To
save computation time, however, we stop the search and output the current solution either
when a locally optimal solution is obtained or when a prespecified computational time is
reached. The time limit is 1000 seconds for instances with up to 200 rectangles, and is
3600 seconds for pcb500. Results are shown in Table 3.3 for five test instances. The mark

“?” indicates that LS is forced to stop by the time limit. We can observe from Table 3.3
that SwapAll is the best neighborhood with respect to the quality of solutions, but takes
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Table 3.3: Comparison of eight neighborhoods

SwapAll SwapMax SwapCri
instance value time value time value time
ami49 94.97 7.61 86.84 0.20 94.27 3.05
rpl00 95.67 123.2 89.71 2.14 94.85 43.18
pcb146 95.57 457.3 87.67 8.32 93.64 39.39
rp200 95.73  1000.0f 90.87 19.51 95.57 808.2
pch500 95.59  3600.07 89.15 1190.0 95.55 3600.07

Shift All Shift Max ShiftCri
instance value  time value  time value  time
ami49 93.25 11.03 84.89 0.22 91.81 1.65
rpl100 93.65 178.5 86.60 2.17 92.57 25.65
pcb146 95.21 739.8 85.69 13.26 94.04 64.30
rp200 94.01  1000.0f 87.01 30.16 92.79 212.0
pcb500 93.70  3600.0f 86.92 1795.6 93.57  3600.0f

Swap* Union
instance value time value time
ami49 83.43 0.12 93.30 2.20
rpl100 86.56 1.29 94.85 27.04
pcb146 88.03 5.24 94.10 38.18
rp200 87.88 11.72 95.76 410.0
pch500 89.96 625.8 94.40  3600.0f
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Table 3.4: Comparison of three metaheuristic algorithms

MLS ILS WALK
instance value  time value  time value  time
ami4d9 96.39 1000.0 96.96 1000.0 92.96 1000.0
rpl00 95.95 1000.0 96.46 1000.0 94.13 1000.0
pcb146 95.47 1000.0 96.33 1000.0 91.82 1000.0
rp200 95.87 1000.0 96.10 1000.0 95.16 1000.0
pcb500 94.16  3600.0 94.16  3600.0 91.43 3600.0

much computational time. The solution quality of ShiftAll is also good, but is slightly
worse than SwapAll, and its computational time is longer than SwapAll. Swap* and two
restricted neighborhoods without using critical paths, SwapMax and ShiftMax, are very
fast, but their solution quality is all poor. On the other hand, those using critical paths,
SwapCri, ShiftCri and Union, show good performance with respect to both the quality
of solutions and computational time, indicating that the use of critical paths is essential
in reducing the neighborhood size effectively. Moreover, we can observe that Union is

more effective than ShiftCri and SwapCri, and we will use Union in the experiments of

Subsections 3.5.5 and 3.5.6.

3.5.5 Metaheuristics

We compared the three metaheuristic algorithms MLS, ILS and WALK described in Sub-
section 3.4.4 on five test instances of the area minimization problem. We ran each algo-
rithm until a prespecified computational time is reached. The time limit is 1000 seconds
for instances with up to 200 rectangles, and is 3600 seconds for pcb500. Results are shown
in Table 3.4. We can observe that ILS found better solutions than other two algorithms

for many instances.

3.5.6 Comparison with other algorithms

Finally, we compared the performance of our algorithm ILS-CBP with other existing
heuristic algorithms, on various instances of the rectangle packing problem and the schedul-
ing problem explained in Subsection 3.5.1. First, we compared our algorithm ILS-CBP
with two heuristic algorithms for the area minimization problem: (1) A simulated anneal-
ing algorithm with the BSG (bounded sliceline grid) coding scheme by Nakatake, Fujiyoshi,
Murata and Kajitani (denoted SA-BSG) [92] and (2) a simulated annealing algorithm with
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Table 3.5: Comparison with other methods for the rectangle packing problem

SA-BSG SA-SP ILS-CBP
instance value time value  time value  time
ami49 97.10 69.0 96.29 176.0 96.30 100.0
rpl100 97.08 68.2 88.54  248.7 95.76  200.0
pcb146 94.87 100.2 94.42 678.7 95.63 300.0
rp200 N.A. N.A. N.A. N.A. 95.67  400.0
pcb500 94.10 334.6 90.82 7802.9 92.27 1000.0

the sequence pair coding scheme by Murata, Fujiyoshi, Nakatake and Kajitani (denoted
SA-SP) [90]. We used five test instances of the area minimization problem, ami49, rp100,
pcb146, rp200 and pcb500. Note that both algorithms SA-BSG and SA-SP are specially
tailored to the rectangle packing problem of minimizing the area, and the results of them
for rp200 are not available (denoted N.A.). Results are shown in Table 3.5. From the
table, we can observe that our algorithm is superior to SA-SP, but SA-BSG seems to be
the best among three algorithms with respect to both the solution quality and the com-
putational time. However, the difference in the quality is not large. It is emphasized that
our algorithm is designed to solve more general problem, and can solve numerous types
of packing and scheduling problems which can not be handled by SA-SP and SA-BSG.

Taking this generality into consideration, the above results appear to be quite satisfactory.

Next, we compared the performance of our algorithm on instances of the scheduling
problem of large building blocks explained in Subsection 3.5.1 with a tabu search algo-
rithm developed for the resource constrained project scheduling problem by Nonobe and
Ibaraki (denoted TS-RCPSP) [93]. To solve the problem by TS-RCPSP, we reformulated
the problem as a project scheduling problem in the way as described in [56]. Note that TS-
RCPSP is not designed for solving the packing problem, but can handle more complicated
scheduling problems with precedence constraints and other resources (e.g., manpower, ma-
chines and equipments) as well as work space. We stop the search either when an optimal
solution (i.e., the objective value is 0) is obtained or when a prespecified computational
time (we set the time limit to 3600 seconds) is reached. If a search stops after finding an
optimum solution, it is called successful. We use five test instances described in Subsection
3.5.1 and results are shown in Table 3.6. Column “ratio” shows (# of successful trials)/(#
of trials). Column “time” shows the average computational time (in seconds) to find an

optimal solution in successful trials. From Table 3.6, we can observe that ILS-CBP is
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Table 3.6: Comparison with algorithm TS-RCPSP on the scheduling problem

TS-RCPSP ILS-CBP
instance ratio time ratio  time
sp50-a 10/10  394.8 10/10  44.98
sp50-b 1/10  2730.6 10/10 125.0
sp78 10/10  427.2 10/10  405.6
sp100-a 10/10 1851.9 10/10 362.6
sp100-b 9/10  1230.1 10/10 47.03

superior to TS-RCPSP in both of the solution quality and the computational time for all

instances. These results also exhibit good prospects of our algorithm.

3.6 Conclusion

In this chapter, we considered the rectangle packing problem with spatial costs, which is
general in that it contains various types of cutting and packing problems and scheduling
problems as special cases. We adopted the sequence pair as the coding scheme, which
is a pair of permutations of the given n rectangles, and proposed decoding and encoding
algorithms between coded solutions and packings. The decoding algorithm is based on
dynamic programming and runs in O(rnlogn + §) time, where 7 and ¢ are the space
complexity of the minimum penalty functions and the spatial cost functions, respectively.
This algorithm generalizes the results of [105, 106] in that it can deal with more general
spatial costs, and runs in O(nlogn) time, the same time complexity as those in [105, 106],
if applied to the case of the area minimization problem.

These algorithms were then incorporated in the local search and metaheuristic algo-
rithms. We defined critical paths for the x and y directions of a packing, and proposed
neighborhoods by making use of such critical paths. We conducted computational exper-

iments and the results exhibited good prospects of the proposed algorithms.



Chapter 4

Improved Local Search Algorithms
for RPGSC

4.1 Introduction

In this chapter!, we continue to consider the rectangle packing problem with general spatial
costs (RPGSC) which was proposed in Section 2.4. The problem is to pack a given set
of n rectangles without overlap so that the maximum cost of the rectangles is minimized.
A solution, called a packing, is determined by specifying the mode and the location of
each rectangle.

As we mentioned in the previous chapters, if we search directly the x and y coordinates
and the mode of each rectangle, an effective search will be difficult since the number of
solutions is uncountably many and eliminating overlap of rectangles is not easy. We
therefore adopt the sequence pair [90] as the coding scheme in our local search algorithm
for RPGSC. A solution is coded as a pair of permutations of n rectangles and a vector
specifying the modes of all rectangles. In Chapter 3, we proposed decoding algorithms,
CMPF and CBP, based on dynamic programming to obtain an optimal packing under the
constraint specified by the coded solution. Algorithm CMPF was a generalization of the
algorithms proposed in [105, 106] so that general spatial costs can be handled. The running
time of this algorithm was O(nlogn) if applied to the cases of the area minimization, strip
packing, two-dimensional knapsack and so on.

In this chapter, we propose new decoding algorithms to evaluate all coded solutions

in various neighborhoods. The amortized computational time of these algorithms per

'The results of this chapter appear in: S. Imahori, M. Yagiura, T. Ibaraki, “Improved local search algo-
rithms for the rectangle packing problem with general spatial costs,” submitted for publication (available

at http://www-or.amp.i.kyoto-u.ac.jp/members/imahori/packing) [64].
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one solution is O(1) or O(logn) depending on the neighborhood, if applied to special
cases including the area minimization, strip packing, two-dimensional knapsack and so on.
These algorithms can not produce a packing, but only compute the objective value of the
packing; however, the speed up of such evaluation is essentially important, since we must

evaluate a large number of coded solutions in local search and metaheuristic algorithms.

In Section 4.2, we consider various neighborhoods which are used in the local search
algorithms for finding good coded solutions. The efficiency of new decoding algorithms
strongly depends on the neighborhood structure. We also make use of the critical path
that corresponds to the bottleneck of the current solution (see Subsection 3.4.2 for the
definition) to reduce the sizes of various neighborhoods. The local search algorithms
based on these neighborhoods are then incorporated in metaheuristic algorithms such as

the random multi-start local search (MLS) and the iterated local search (ILS).

The details of the proposed decoding algorithms are described in Section 4.3. In these
algorithms, we utilize the common structure among all of the neighborhood solutions and

evaluate those solutions based on dynamic programming.

The computational results are reported in Section 4.4. We examine the performance of
proposed decoding algorithms to compare with three decoding algorithms proposed in the
previous chapter. We also compare our algorithms with other existing heuristic algorithms

for some variants of the rectangle packing problem and a real-world scheduling problem.

4.2 Neighborhoods for local search

In this section, we propose various types of neighborhoods and design local search and
metaheuristic algorithms to find good coded solutions (o, ). We first explain the frame-
work of our local search in Subsection 4.2.1, and then propose various types of neigh-
borhoods based on the critical paths in subsequent subsections. As we mentioned in
Chapters 1 and 3, if LS is applied only once, many solutions of better quality may re-
main unvisited in the search space. To overcome this, the local search algorithm based
on various neighborhoods are then incorporated in metaheuristic algorithms such as MLS
and ILS. In our ILS algorithm, we use the best locally optimal solution obtained so far
(if there exist ties, we use the solution obtained most recently) as (0seed, fseed ), and apply
random swap operations (i.e., exchange the positions of randomly chosen two rectangles
in both permutations) v times on (Oseed, fseed) tO generate a new initial solution. Here,
v is a parameter and we set it one, two or three at random. In preliminary experiments,
we observed that ILS was generally superior to MLS, and hence we will use ILS as the

framework of our metaheuristic algorithm in Section 4.4.
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4.2.1 Framework of local search

The frame work of our local search is basically similar to that in Subsection 3.4.1, and
we omit the thorough explanation here. In this subsection, we only explain some points
different from the previous one.

First, a solution (o, u) is evaluated by the objective value of an optimal packing 7 €
I1; ., which can be computed efficiently by decoding algorithms in Section 4.3. However,
to break ties, we also compute the number of rectangles which are on the critical paths,
and put a higher priority on a packing with a smaller number of rectangles on the critical
paths.

Then, we use the following three types of neighborhoods, called shift, two-shifts and
change mode in our local search. Shift and change mode are more or less standard neigh-
borhoods which we also utilized in the previous chapter. Two-shifts is an extension of
the shift neighborhood which includes the swap neighborhood, another standard neigh-
borhood.

4.2.2 Shift neighborhood

A shift operation changes the position of one rectangle ¢ to another position in both
o4+ and o_. The shift neighborhood is defined to be the set of all solutions obtainable
from the current solution by a shift operation. Its size is O(n3). To reduce the size of
shift neighborhood, we use the information of the critical paths, i.e., we shift only those
rectangles ¢ located on the critical paths. It is easy to show that a solution is locally optimal
in the original neighborhood if no improved solution is found in the reduced neighborhood.
In this sense, we can reduce the size of shift neighborhood without sacrificing the solution
quality. In our implementation, we further restrict the positions, where a shifted rectangle ¢
is placed, in the following three manners.

(1) The position of the shifted rectangle is changed only in one permutation (o4 or o_).
We call this a single shift operation.

(2) The positions, where the shifted rectangle i is inserted, are determined by the
following rule: We choose one rectangle j (# i) arbitrarily and insert i before or after
J in both o4 and o_, thereby four insertion positions of ¢ are examined for each j (see
Figure 4.1). Intuitively, in the packing space, we move rectangle ¢ to the position just to
the left of, right of, above or below the chosen j by these restricted operations. We call
this a limited double shift operation.

(3) We insert rectangle i to positions close to the current positions of 7 in two permu-
tations. To control the size of this neighborhood, we limit the distance from the current

position to up to [ay/n] in each permutation, where a is a parameter. (We set a := 1
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Figure 4.1: An example of the limited double shift operation

in our computational experiments.) The size of this neighborhood becomes O(a?n) for
each 7. We call this a near-place double shift operation.

For convenience, we denote each of these operations a limited shift operation, and the
set of solutions obtainable by a limited shift operation is called the limited shift neighbor-
hood. The size of this neighborhood (based on three kinds of operations) is O(cn), where

c is the number of rectangles on the critical paths.

4.2.3 Two-shifts neighborhood

A two-shifts operation changes the positions of two rectangles ¢ and 7 to another positions
in o4 and o_. The size of two-shifts neighborhood is too large to search efficiently, and
hence we propose some reduction methods for this neighborhood.

First, we restrict the rectangles ¢ and 7 to be shifted. At least one rectangle must be
chosen from the rectangles on critical paths to improve the current solution. However,
since choosing both rectangles from critical paths appears too restrictive, we choose one
rectangle from critical paths and another arbitrarily.

Next, we restrict the insertion positions of the rectangles ¢ and j to those determined
by one of the following rules:

(1) First, we exchange the positions of two rectangles i and j in both permutations.
Then, we shift the position of only one rectangle ¢ to another position in o4 and o_ by a
limited shift operation proposed in the previous subsection. We call this a swap-and-shaift
operation.

(2) We remove two rectangles ¢ and j from permutations and insert them one by one
in greedy fashion. First we choose a pair of permutations consisting of n — 1 rectangles
I'\ {j} among those obtainable by a limited shift operation of rectangle i, where n — 2
rectangles in I\ {7, 7} are fixed. Then rectangle j is inserted into any position by a limited

shift operation of rectangle j. We call this a greedy two-shifts operation.
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The set of solutions obtainable by one of these operations is called the limited two-shifts
neighborhood. The size of this neighborhood is O(cn?).

4.2.4 Change mode neighborhood

A change mode operation changes the mode of one selected rectangle. This is the only
operation applied to the vector u. We combine this operation to shift and two-shifts

operations, i.e., when we insert a rectangle to permutations, we may change its mode.

4.3 Decoding algorithms

In this section, we consider the following problem for a given coded solution (o, p):

RPGSC (o, p): minimize 9(Pmax(7), qmax (7)) (4.3.1)

subject to m e Il ,,

and propose dynamic programming algorithms to compute the objective value of an op-
timal packing efficiently. We first review a basic decoding algorithm CMPF (Compute-
Minimum-Penalty-Function) proposed in Subsection 3.3.1 for solving RPGSC(o, p1). This
algorithm is also used in our new local search algorithm.

Let us define J! and f;(z) for each i as follows:
Ji={iellj =5,
fi(x): the minimum value of max; ¢ s ;) pj(x;(m)) subject to zj(m) + w; <
zj(m) for all 4,5 € JEU {i} with j # j' and j <2 j/, and z;(7) + w; < z.
We call f;(z) the minimum penalty function. This function is nonincreasing in = by the

definition, and the minimum penalty value ppax(7) of (2.4.2) can be obtained by

max min fi(x).

Then, by the idea of dynamic programming, f;(z) can be computed by

ming. <q—w, Pi(2;), if Jf =10,
filg)=q .7 : (4.3.2)
MiNg, <z, max{p;(z;), max;c st fj (z;)}, otherwise.
The horizontal coordinate z;(m) of each rectangle i can be computed by
max{w; | pi(z;) = ming {pi(z}) | fi(2; + w;) = min, fi(z)}},
if JP =10,
zi(m) = e (4.3.3)

max{z; | pi(2;) = ming {pi(z}) | fi(2; +wi) = min, {fi(z) |z < ri}}},

otherwise,
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where J? = {j € I'|i <% j} and r; = minc s zj(m). We can minimize pmax(m) with these
horizontal coordinates, and moreover, we can minimize p;(z;(7)) for all i locally.
Computational time of this algorithm is O(7nlogn) which depends on the space com-
plexity 7 (i.e., the number of linear pieces) of the minimum penalty functions f;(z).
In many important special cases, such as the area minimization, strip packing, two-

(i)

dimensional knapsack and so on, the spatial cost functions p,""/(x) are simple and 7

becomes O(1). In more general cases of pz(“i)(a:), 7 is O(n) in many realistic applications.
More detailed analysis of 7 was discussed in Subsection 3.3.2.

We then propose new decoding algorithms for various neighborhoods in Subsections
4.3.1 and 4.3.2. We will explain algorithms to minimize pyax(7) only. Algorithms to
minimize ¢max(7) can be similarly defined and we can minimize the objective value of

RPGSC(o, i) by applying these algorithms to the z and y coordinates independently.

4.3.1 Evaluating shift moves

We propose an algorithm to evaluate solutions in the shift neighborhood where the current
solution is (o, ) and rectangle i will be shifted. We call this algorithm Evaluate-Shift-
Moves (ESM), which is described as follows.

Let I = I — {i} and (&, /1) be the coded solution obtained from the current solution
(o, 1) by removing a rectangle i, and 7 be a packing of rectangles in I such that 7 € I 5.
We can compute an optimal packing 7* € Il ; from (&, ji) by algorithm CMPF. If a new
packing 7 does not have the rectangle 2 on its critical paths of x direction, the minimum
penalty value ppax(m) is equal to prax (7).

We then compute the minimum penalty value under the influence of rectangle ¢. For
this, let us define j&ﬁa jgﬂ, faﬂ(aj) and l;a’ﬂ(m) for each pair o and 3 such that 1 <
a,f < n.

Js=1{iel67'() < ,62'(j) < B},
Jby={i€1]6,'() > o,6-1(j) > B},

fawg(w): the minimum value of max;cji P; (zj(7)) subject to

]
x;(7) —|—w§-“j) <z VjeE j(iﬁ ,
l;aﬂ(a:): the minimum value of maX;e b pgﬁj)(mj(fr)) subject to

xj(T) > x, Vj € jgﬂ .

Then, by the idea of dynamic programming, faﬂ(m) (respectively, l;aﬂ(a:)) can be com-
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puted by
(0, ifa=1lor =1,
fap(z) = { max{fo—1,5(x), fa,6- 1< )} ite (a—1)#£6 (8-1),
\ min_ ) {maX(P] Db, fa1,5-1(0)}, ifoi(a-1)=0-(8-1)=},
(4.3.4)
r0, if a =nor f=n,
ba,s(z) = { max{bai15(7),basii()}, if 5, (a) #6_(8),
| mings, {max(p?) (8), bagrpaa b+ w)}, i 64(0) = 5-(8) = 4,
(4.3.5)

for all pairs of « = 1,2,...,n and # = 1,2,...,n (resp., all pairs of « = n,n —1,...,1
and f = n,n —1,...,1). The above computation is illustrated through an example in

Figure 4.2. Each box in this figure corresponds to fo 5(z) (resp., by s(x)) for each pair of

o o
1 2 3 4 5 6 1 2 3 4 5 6
1lo]o O\LO ol o 1| 4L L Lo
| | | | A A A A
\4 \4 \4 \4 | | |
. T& T 5 4 %‘/ 5
> > > > < < <« <
B / | | | I5] Al a4l *
\4 \4 \4 \4 | | |
alod"LTLT L Z s 478 $o
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5 0 5 > /» 5 4%/ <+ <4+ <0
A\

NEE3877 aeacan NNy o A E R AT

(a) computation of fa.z(z) (b) computation of by z(z)

Gy :1,2,3,4,5, &_:3,1,54,2)
Figure 4.2: An example of computing fo 5(z) and b, 5(z)

a and (3, and arrows mean how to compute each function. That is, the function of each
shaded box is computed by the third formula of (4.3.4) (resp., (4.3.5)). After computing
these, we can obtain the minimum penalty value pyax(7) of the coded solution obtained
by inserting the removed rectangle ¢ into the ath position of 64 and the Sth position of 6

with mode k, by

Prmax (1) = max{ppnax (), min max(fo,o(t), P (1), bt + wlF))}. (4.3.6)

Note that, we can check all modes k = 1,2,...,m; for rectangle ¢ at this stage. It takes
O(7) time to compute ppax(7) for each mode.

Now we evaluate the time complexity of ESM. It first takes O(7n logn) time to compute
an optimal packing 7* € I1; ; with algorithm CMPF. Time to compute fo 5(z) and b ()
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for all pairs of a and 3 by (4.3.4) and (4.3.5) is O(7n?). Time to compute the minimum
penalty value by (4.3.6) is O(7) for each pair of @ and 3, and it becomes O(7n?) for all
pairs of @ and (. In summary, the total computational time of this algorithm, i.e., time
to evaluate all solutions when rectangle i is shifted in the shift neighborhood, is O(7n?).
That is, it takes O(7) amortized time to evaluate a coded solution in the neighborhood,
and this becomes O(1) for special cases in which 7 = O(1) (e.g., area minimization, strip

packing, and two-dimensional knapsack).

4.3.2 Evaluating limited shift moves

We propose an algorithm to evaluate solutions in the limited shift neighborhood where
rectangle ¢ will be shifted. It is clear that we can evaluate all solutions in this neighborhood
with the previous algorithm, however, taking O(7n) amortized time to evaluate each coded
solution, since there are only O(n) solutions in this case. Therefore, we introduce some
ideas to compute faﬁ(]?) and Ea”g(x) only for those a, 8 necessary to evaluate solutions in
this neighborhood. Note that, the limited shift neighborhood is based on three kinds of

operations defined in Subsection 4.2.2, and we propose ideas for each operation.

To evaluate solutions obtainable by a limited double shift operation, we can obtain
fa’ﬂ(m) from the computation of algorithm CMPF for 7*. That is, if we insert rectan-
gle i before or after rectangle j = 64(av —1) = 6_(8 — 1) in both permutations, we use
fo1.581(), far15(), fap_1(z)or fops(z) to evaluate a new coded solution (e.g., if i is
inserted ‘after’ j in both ¢4 and 6_, faﬁg(a:) is necessary to compute (4.3.6)). Let us define
jjf and fj(z) in a similar way as J! and fi(z). Function f;(z) is computed in the computa-
tion CMPF for 7*. Then, faﬁ(]?) is equal to f;(x), since j(iﬁ = jjf U{j}. Moreover, other
functions fo_1-1(x), fa—1p(x) and fup_1(x) are equal to max;, je fjr(x), which is a
part of (4.3.2) and has been already computed, since j(i—l,,b’—l = ji_l,ﬁ = ji,ﬁ_l = jjf
Therefore, we can compute f, g(x) for all necessary o and 3 in O(rnlogn) time, which is
the computational time of CMPF. We can compute l;aﬂ(a:) for all necessary o and (3 in a
similar way.

To evaluate solutions obtainable by a single shift operation where rectangle ¢ will be
shifted in oy, we should compute fo 5(z) for all 1 < o < n and 8 = 0-'(i). fa () can

be computed for all necessary « and 3 by

X max{forp(x), fy(2)}, 62 < B -2,
fop(@) =4 fi(), if6='(j") =B -1, (4.3.7)
fa—l,,@(iﬂ), otherwise,
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Figure 4.3: An example of evaluating solutions obtainable by a single shift operation

where j' = 64 (o — 1). This is because fa,/j(iﬂ) defined by (4.3.4) satisfy (see Figure 4.3):

faﬂ(m) = maX{fmlﬂ(m) ~1(@)} = maX{fa 1,8(%), fa717ﬁf1($)afa7ﬁ—2($)} =
= max{fo_1,4(2), fa—1,8-1(2), -, far1,441(2), fau(z)}
= max{fa_1,4(), f; ( )} if 67'(j)=1-1<p8-2
(), /.
(), /.

1(z)} = ma,x{fa 1,8( ),fa717571($),fa7572($)} =

faﬂ(m) = max{faflﬂ €T
:max{fa,lﬂ x 1(z ),---,fa 1,2(x), fa1(z)}
= faflﬂ(x)a if ~_1( ) > ﬂ

Similarly, if ¢ is shifted in o_, fa,/g(:z:) can be computed for all necessary a and (8 by

) max{fo,5-1(2), fr(@)}, 631" <=2,
fop(T) = jij,,(a;), if 671 (j") =a—1, (4.3.8)
fa,p-1(x), otherwise,

where j” = & (3 —1). Time to compute faﬁg(a:) for all necessary a and (3 by (4.3.7) or
(4.3.8) is O(7n) if the information from algorithm CMPF is retained. The computation
of i)a,,@(iﬂ) is similar and is omitted.

To evaluate solutions obtainable by a near-place double shift operation where rectan-
gle ¢ will be shifted, we should compute fa,/j(iﬂ) for all af < a@ < oy and G < 8 < B,
where o, — oy < 2[ay/n] and B, — f; < 2[ay/n]| hold (a is a parameter explained in
Subsection 4.2.2). We first compute fg 5 (z) for 1 < a < a, by (4.3.7) and fa, () for
1 < B < By by (4.3.8). Then, we use (4.3.4) to compute faﬁ(]?) forall oy +1 < a < ay
and 3+ 1 < 3 < 3, (see Figure 4.4 as an example). Therefore, we can compute fa’ﬂ(m)
for all necessary o and 8 in O(7a?n) time. The computation of Ea”g(x) is similar and is

omitted.
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Figure 4.4: An example of evaluating solutions obtainable by a near-place double shift

operation

In summary, we can evaluate all solutions in the limited shift neighborhood where
rectangle ¢ is shifted in O(rnlogn) time. Therefore, amortized computational time to
evaluate one coded solution becomes O(7logn). We call this algorithm Evaluate-Limited-
Shift-Moves (ELSM). Note that we can evaluate solutions in the limited two-shifts neigh-
borhood efficiently with similar ideas. The amortized computational time to evaluate one
solution in the limited two-shifts neighborhood where rectangles ¢ and j will be shifted is
also O(7logn). This becomes O(logn) for special cases such as area minimization, strip

packing and so on, since 7 = O(1) holds for such cases as mentioned before.

4.4 Computational experiments

We conducted thorough computational experiments to evaluate the proposed algorithms.
The algorithms were coded in the C language and run on a handmade PC (Intel Pentium III
1 GHz, 1 GB of memory). We used instances of three problems, whose data are obtainable

electronically from http://www-or.amp.i.kyoto-u.ac.jp/"imahori/packing/.

4.4.1 Detailed comparisons of various CPUs

We first compare various CPUs in order to compare the performance of various algorithms,
ILS-CBP, SA-BSG, SA-SP, BLF, SA-BLF, QH, TS-RPGSC and our ILS-ELSM, as fairly
as possible (see the subsequent subsections for each algorithm). Table 4.1 shows the
benchmark results of SPECint2000 and SPECint95 from SPEC web page for related CPUs
(http://www.specbench.org/). In case the data of a related CPU is not available, the
data of similar CPUs are shown.

Based on these data, we compute rough estimates of the speed of the related CPUs and
show them in Table 4.1, where the speed of the Pentium IIT 1 GHz (CPU for ILS-CBP,
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Table 4.1: Speed of various CPUs

CPU (algorithms) SPECint2000 SPECint95 estimated speed
Pentium III 1 GHz 418 1
(ILS-CBP, ILS-ELSM, TS-RPGSC)

Pentium IIT 933 MHz 398 0.97
Pentium IIT 910 MHz 0.95
(SA-BSG, SA-SP)

Pentium IIT 866 MHz 380 0.91
Pentium IIT 800 MHz 361 38.7 0.86
Pentium Pro 200 MHz 8.08 0.18
(BLF, SA-BLF)

Sun Sparc 20/71 3.11 0.07
(QH)

ILS-ELSM and TS-RPGSC) is normalized as one, and a larger value means the speed is

faster.

4.4.2 Comparison with our previous algorithms

We conducted two kinds of computational experiments to compare the proposed algo-

rithms with our algorithms in Chapter 3.

Decoding algorithms

We examine the performance of five decoding algorithms: (1) an O(7n?) time naive al-
gorithm in Subsection 3.3.1 (denoted NAIVE), (2) algorithm CMPF in Subsection 3.3.1
whose time complexity is O(rnlogn), (3) algorithm CBP in Subsection 3.3.4 whose time
complexity is O(rnlogn), (4) algorithm ESM in Subsection 4.3.1 whose amortized time
complexity is O(7), and (5) algorithm ELSM in Subsection 4.3.2 whose amortized time
complexity is O(7logn). All time complexities are for one coded solution. We tested
instances of several sizes and several cost functions. Results are shown in Table 4.2. The
figures in the table show the computational time to evaluate one given coded solution.
Column “n” shows the size of instances and column “cost type” shows the type of cost
functions. The type “special” means that all rectangles have some special cost functions
and then 7 is O(1), and “general” means that rectangles have general cost functions, each

with a few segments, and then 7 is O(n).
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Table 4.2: Computational time of the decoding algorithms in seconds

n  cost type  NAIVE CMPF CBP ESM ELSM

49  special  1.01 x10~* 3.80 x107™° 8.31 x107°> 2.85 x10~" 7.18 x10~7
100 special  4.42 x107*% 9.12 x107° 2.01 x10°% 4.26 x10°7 6.91 x10~7
146  special  9.12 x107* 1.38 x10™* 3.03 x10™* 4.96 x10~" 8.47 x10~'
200  special  1.93 x1073 1.92 x10* 4.23 x107* 5.55 x10°7 7.84 x10°7
500  special  1.13 x1072 7.30 x10™* 1.58 x10™® 5.39 x10~7 1.20 x10~©
49  general 9.06 x10~* 3.70 x10~* 3.27 x10~* 7.66 x10~% 9.81 x10~6
100  general 4.22 x1073 8.66 x10™* 7.79 x10™* 7.44 x107% 1.14 x107°
146  general 848 x1073 1.90 x10~2 1.54 x1073 7.50 x1076 1.42 x10~°
200 general 2.06 x1072 2.54 x1073% 2.16 x10™% 7.49 x107% 1.37 x107°
500 general 1.19 x107! 1.23 x1072 1.08 x10~2 8.44 x107% 1.90 x10~°

From Table 4.2, we can observe that proposed algorithms ESM and ELSM are much

more efficient than previous algorithms even for small instances such as n = 49.

Local search and metaheuristic algorithms

We compare the performance of the proposed iterated local search algorithm (denoted ILS-
ELSM), in which proposed decoding algorithms are incorporated, with our previous ILS
algorithm (denoted ILS-CBP). Note that ILS-CBP is based on a decoding algorithm CBP,
which was observed to be superior to another ILS algorithm based on CMPF if the same
neighborhoods are used (see Subsection 3.5.2). ILS-CBP uses standard neighborhoods
(swap, shift and change mode) and swap* neighborhood, where swap* is a subset of the
two-shifts neighborhood. ILS-ELSM uses the combination of limited shift, limited two-
shifts and change mode neighborhoods, and evaluates solutions with ELSM. We tested
instances of the area minimization problem with up to 500 rectangles. We terminate the
search when a prespecified computational time is reached even if we have not found any
locally optimal solution, and output the best solution obtained during the search. Results

are shown in Table 4.3. Column “value” shows the average of the following ratio,

(the lower bound of the objective function)

100 x
(the objective value of the output optimum) ’

for ten trials (i.e., the larger the better). Column “time” shows the time limit (in seconds)
for one instance. These notations are also used in Tables 4.4 and 4.6. Column “lopt”

shows the average number of obtained locally optimal solutions (i.e., “0.0” means each
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Table 4.3: Comparison with our previous algorithm for area minimization

ILS-CBP ILS-ELSM
instance value  time lopt  move value  time lopt  move
ami49 96.30 100.0 52.7 2987.5 97.37 100.0 61.9 5064.8
rpl00 95.76  200.0 81 1176.5 96.78  200.0 15.7 2526.4
pcb146 95.63 300.0 11.8 1305.8 96.71 300.0 18.5 2347.2
rp200 95.67  400.0 0.3  495.3 96.30  400.0 3.3 12494
pcb500 92.27 1000.0 0.0 457.8 96.28 1000.0 0.4 800.0

run is forced to stop by the time limit before any locally optimal solution is found).
Column “move” shows the average number of moves from a solution to a better solution.
From the table, we can observe that ILS-ELSM is superior to ILS-CBP in quality for all
instances. The numbers of obtained locally optimal solutions and moves by the proposed
ILS algorithm are not so large, even though the time to evaluate a solution is much smaller

than ILS-CBP, since the size of the neighborhood we use is larger than the previous one.

4.4.3 Comparison with other existing algorithms for area minimization

In this subsection, we compare our algorithm ILS-ELSM with two existing algorithms
for the area minimizing problem: (1) A simulated annealing algorithm with the BSG
coding scheme by Nakatake et al. [92] (denoted SA-BSG) and (2) a simulated annealing
algorithm with the sequence pair coding scheme by Murata et al. [90] (denoted SA-SP).
Note that the definition of this problem and the reduction to RPGSC form were given in
Subsection 2.4.2, and test instances of this problem were explained in Subsection 3.5.1.

Algorithms SA-BSG and SA-SP were coded in the C language and run on a PC (Intel
Pentium IIT 910 MHz), where the speed of this CPU is similar to ours (slightly slower, see
Subsection 4.4.1 for more detailed comparison). These algorithms are specially tailored
to the rectangle packing problem of minimizing the area, and their results for rp200 are
not available (denoted N.A.). All results are shown in Table 4.4. Notations of this table
are the same as Table 4.3. From Table 4.4, we can observe that ILS-ELSM is superior
to SA-SP in both of the solution quality and the computational time for all instances.
We can also observe that ILS-ELSM is superior to SA-BSG for almost all instances, and
this tendency becomes clearer for larger instances. Note that our algorithm is designed to
solve more general problems. Taking the generality of ILS-ELSM into consideration, the
performance of ILS-ELSM appears to be quite satisfactory.
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Table 4.4: Comparison with other methods for the area minimization problem

SA-BSG SA-SP ILS-ELSM
instance value time value time value time
ami4d9 97.10 69.0 96.29 176.0 97.29 65.0
rpl00 97.08 68.2 88.54  248.7 96.40  65.0
pcb146 94.87 100.2 94.42 678.7 96.16 100.0
rp200 N.A. N.A. N.A. N.A. 95.75 150.0
pcb500 94.10 334.6 90.82 7802.9 95.47 300.0

4.4.4 Comparison with other existing algorithms for strip packing

In this subsection, we compare our algorithm with other algorithms for the strip packing
problem. Although this problem has been defined in Chapter 2, we explain the prob-
lem again and show test instances for our computational experiments. Then we show

computational results for these instances.

Definition of the strip packing problem

We are given a set of n rectangles I = {1,2,...,n} and the width W of a large object
(strip), where each rectangle ¢ € I has a width w; and a height h;. The rotations of 90°
are allowed and the objective is to minimize the height of the strip that contains all the
given rectangles.

In our formulation as RPGSC instances, each rectangle has two modes of orientations.

For:=1,2,...,n, we set the width and height

wl = w;, Y = b,
w§2) = h;, hz(-2) = w;.
For each : =1,2,...,n and k = 1,2, we set cost functions
+0o0 (x <0)
(@) =4 0 0<z<w—uw®) (4.4.9)
e —W+w)+ 5 (x>W —uwl),
(k) +00 (y <0)
q; "\y)= 4.4.10
v {y+h§’“> (y>0), i

where a and 3 are nonnegative constants such that at least one of them is positive. We

set @ = 10 and 8 = 0. The objective of the resulting RPGSC instance is to minimize
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Table 4.5: Test instances of the strip packing problem

category #rectangles n  bin width W  optimal height

C1 16 or 17 20 20
C2 25 40 15
C3 28 or 29 60 30
C4 49 60 60
C5 73 60 90
C6 97 80 120
cr 196 or 197 160 240

Pmax(T) + qmax(m) (i.e., the height of the strip if ppax(m) = 0). We use test instances
given by Hopper and Turton [58]. There are seven different categories called C1, C2, ...,
C7 with the number of rectangles ranging from 16 to 197, where each category has three

instances. The optimal value is known for all categories (see Table 4.5).

Computational results

We compared our algorithm ILS-ELSM with three existing heuristic algorithms for the
strip packing problem: (1) A heuristic algorithm bottom left fill with decreasing width
proposed by Chazelle [19] and implemented by Hopper and Turton [58] (denoted BLF),
(2) a simulated annealing algorithm with BLF algorithm by Hopper and Turton [58]
(denoted SA-BLF) and (3) an effective quasi-human based heuristic by Wu et al. [116]
(denoted QH). The results of algorithms BLF and SA-BLF are taken from [58], where these
algorithms were coded in the C++ language and run on a PC (Intel Pentium Pro 200 MHz,
65 MB memory). The results of algorithm QH are taken from [116], where algorithm QH
was run on a SUN Sparc 20/71 (71 MHz SuperSparc CPU, 64 MB memory). Based on
the benchmark results of SPECint, our CPU is about six times faster than Intel Pentium
Pro 200 MHz and fourteen times faster than SuperSparc 71 MHz (see Subsection 4.4.1 for
more detailed comparisons). Note that QH is not designed for solving the strip packing
problem but for the rectangle packing problem with a bounding box. Therefore, to solve
the strip packing problem with QH, Wu et al. run their algorithm many times while
increasing the size of the bounding box by one unit per iteration (not only the height but
the width of large object may be increased) to find the minimum bounding box in which
all rectangles can be packed. As they change W, the problem solved by QH is different
from others.

Results are shown in Table 4.6. Notations of this table are the same as Table 4.3,



78 Improved Local Search Algorithms for RPGSC

Table 4.6: Comparison with other methods for the strip packing problem

BLF SA-BLF QHT ILS-ELSM
category value time value time value  time value  time
C1 89 < 0.1 96 42 95.24 1.63 97.56 10.0
C2 84 <01 94 144 97.92  6.19 93.75 15.0
C3 88 < 0.1 95 240 96.77 17.17 96.67 20.0
C4 95 <01 97 1980 97.29 221.3 96.88  150.0
C5 95 < 0.1 97 6900 98.36  905.3 97.02 500.0
C6 95 < 0.1 97 22920 98.36 4581 96.85 1000.0
Cc7 95 0.64 96 250860 N.A. N.A. 96.55 3600.0

fQH may increase the width of large object not only the height.

except for the number of trials; the results are the average of ten trials for SA-BLF
and ILS-ELSM, however, only one trial for BLF and QH, since these two algorithms are
deterministic. Note that the result of QH for C7 is not available (denoted N.A.) and their
computational time does not include the time of the trial iterations to find the minimum
bounding box in which all rectangles can be packed with QH (i.e., the time is reported only
for the “successful” iteration). From Table 4.6, we can observe that BLF is much faster
than other algorithms (“< 0.1” in this table means the computational time is less than 0.1
seconds), but the quality of solutions is a little worse than other algorithms. ILS-ELSM is
slightly superior to SA-BLF in terms of the solution quality with less computational time.
It is not easy to compare ILS-ELSM with QH, since the problem solved by QH is different
from the strip packing problem. The solution quality of QH is quite good, however, ILS-
ELSM seems very effective since it can deal with large instances such as n = 196 or more,
and does not need any preliminary adjustments.

Now, we show the detailed results of our algorithm ILS-ELSM on the Hopper and
Turton’s instances [58]. There are seven different categories called C1, C2, ..., C7 and
each category has three instances called P1, P2 and P3. We ran our algorithm ILS-ELSM
ten times for each instance, and results are shown in Table 4.7. Column “average” (resp.,

“best” and “worst”) shows the average (resp., best and worst) of the following ratio,

the optimal value
100 x

(the objective value of the output solution) ’

for ten trials. We terminated the search with time limit (specified in column “time”), and

column “lopt” shows the average number of obtained locally optimal solutions.



Table 4.7: Detailed results by ILS-ELSM for Hopper and Turton’s instances

4.4 Computational experiments

instance n  average best worst time lopt
C1-P1 16 99.50 100.0 95.24 10.0 411.0
C1-P2 17 95.69 100.0 95.24 10.0 297.6
C1-P3 16 97.56 100.0 95.24 10.0 3224
C2-P1 25 93.75 93.75 93.75 15.0 155.5
C2-P2 25 93.75 93.75 93.75 15.0 167.6
C2-P3 25 93.75 93.75 93.75 15.0 195.9
C3-P1 28 96.77 96.77 96.77 20.0 194.3
C3-P2 29 96.77 96.77 96.77 20.0 220.3
C3-P3 28 96.46 96.77 93.75 20.0 224.6
C4-P1 49 96.93 98.36 96.77  150.0 233.0
C4-P2 49 96.77 96.77 96.77 150.0 268.2
C4-P3 49 96.93 98.36 96.77 150.0 265.6
C5-P1 73 96.98 97.83 96.77  500.0 199.8
C5-P2 73 96.77 97.83 95.74 500.0 221.8
C5-P3 73 97.30 98.90 96.77  500.0 195.7
C6-P1 97 96.93 97.56 96.77 1000.0 158.1
Cc6-P2 97 96.46 96.77 96.00 1000.0 200.3
C6-P3 97 97.16 97.56 96.77 1000.0 181.6
C7-P1 196 96.42 96.77 96.00 3600.0 54.5
Cr-pP2 197 96.70 97.17 96.00 3600.0 62.4
C7-P3 196 96.54 96.77 96.00 3600.0 64.7

79
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Table 4.8: Comparison with other methods for the scheduling problem

TS-RPGSC ILS-CBP ILS-ELSM
instance ratio time ratio  time ratio time
sp50-a 10/10  394.8 10/10  44.98 10/10  41.63
sp50-b 1/10  2730.6 10/10 125.0 10/10  47.60
sp78 10/10  427.2 10/10  405.6 7/10  1680.4
spl100-a 10/10 1851.9 10/10 362.6 3/10  1954.5
sp100-b 9/10  1230.1 10/10 47.03 10/10  574.9

4.4.5 Comparison with other algorithms on scheduling problems

In this subsection, we compared the performance of our algorithm with a tabu search algo-
rithm developed for the resource constrained project scheduling problem by Nonobe and
Ibaraki [93] (denoted TS-RPGSC) and our previous algorithm ILS-CBP on the scheduling
problem explained in Subsection 3.5.1. As we mentioned in the previous chapter, to solve
the problem by TS-RPGSC, we reformulated the problem as a project scheduling problem
in the way as described in [56]. Note that TS-RPGSC is not designed for solving the
packing problem, but can handle more complicated scheduling problems with precedence
constraints and other resources (e.g., manpower, machines and equipments) as well as

work space.

We terminate the search either when an optimal solution (i.e., the objective value
is 0) is obtained or when a prespecified computational time (we set the time limit to
3600 seconds) is reached. If a search stops after finding an optimum solution, it is called
successful. Results are shown in Table 4.8. Column “ratio” shows (the number of successful
trials) / (the number of trials). Column “time” shows the average computational time
(in seconds) to find an optimal solution in successful trials. From Table 4.8, we can
observe that ILS-ELSM is superior to TS-RPGSC and ILS-CBP for some instances such
as sp50-a and sp50-b, but ILS-CBP seems to be the best among the three algorithms. By
preliminary experiments, an iterated local search algorithm, which is similar to ILS-CBP
but decoding algorithm CMPF is incorporated, is inferior to ILS-CBP and ILS-ELSM. We
therefore conclude that decoding algorithm CBP works well for this scheduling problem.
It is our future work to propose another improved decoding algorithm maintaining good
characteristics of CBP and ELSM.
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4.5 Conclusion

In this chapter, we tackled the rectangle packing problem with general spatial costs, which
contains numerous types of packing problems and scheduling problems as special cases.
We adopted the sequence pair as the coding scheme, which is a pair of permutations of
the given mn rectangles, and proposed speed-up techniques to evaluate solutions in var-
ious neighborhoods for this problem. By ESM (resp., ELSM), we realized O(7) (resp.,
O(7logn)) amortized computational time to evaluate one coded solution, where 7 is the
space complexity of the minimum penalty function. It becomes O(1) or O(log n) for impor-
tant special cases such as the area minimization, strip packing, two-dimensional knapsack
and so on.

We also reported computational results for two variants of the rectangle packing prob-
lem, area minimization and strip packing, and a real-world scheduling problem. The

computational results were quite encouraging for our algorithm proposed in this chapter.






Chapter 5

Local Search Algorithms for
2DCSP with a Given Number of

Different Patterns

5.1 Introduction

In this chapter', we consider the two-dimensional cutting stock problem. As we men-
tioned in Chapter 2, it is one of the representative combinatorial optimization problems,
and arises in many industries such as steel, paper, wood, glass and fiber. The problem
can be defined as follows: We are given a sufficient number of stock sheets of the same
width W and height H, and n types of rectangular products, where each product ¢ has its
width w;, height h; and demand d;. From stock sheets we have to cut rectangular prod-
ucts, whose number is specified as demands. The objective is to minimize the total number
of stock sheets required. This problem is NP-hard, since this is a generalization of the
two-dimensional bin packing problem and the (one-dimensional) cutting stock problem,
which are already known to be NP-hard [39].

As we mentioned in Subsection 1.2.1, it is often impractical to use many different
cutting patterns in recent cutting industries, and some researchers (e.g., Foerster and
Wascher [37], Haessler [54], Umetani et al. [108]) have proposed algorithms for the one-
dimensional cutting stock problem with consideration on the number of cutting patterns.
In this chapter, we consider the two-dimensional cutting stock problem using a given num-

ber of different patterns m (we call this problem 2DCSPm). 2DCSPm asks to determine

'The results of this chapter appear in: S. Imahori, M. Yagiura, S. Umetani, S. Adachi and T. Ibaraki,
“Local search algorithms for the two dimensional cutting stock problem,” Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and Informatics Volume IX (2003) 334-339, [65, 66].
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a set of cutting patterns, whose size is m or less, and the numbers of applications of each
cutting pattern. The objective is to minimize the total number of applications of cutting
patterns.

The problem of deciding the number of applications for each pattern becomes an integer
programming problem (IP). In Section 5.3, we propose a heuristic algorithm for the IP,
which is based on its linear programming (LP) relaxation. We incorporate a sensitive
analysis technique and the criss-cross method [119], a variant of simplex method, into our
algorithm for efficiency. In Section 5.4, we propose local search algorithms to find a good
set of cutting patterns. As the size of the neighborhood plays a crucial role in determining
the efficiency of local search, we propose to utilize the dual solution of the LP relaxation
for the purpose of restricting the number of solutions in the neighborhood. We design two
kinds of neighborhood, basic and enhanced. Then they are computationally compared
from the view point of the performance of the resulting local search algorithms.

To generate a feasible cutting pattern, we have to place all the given products in the
stock sheet (two-dimensional area) without mutual overlap. At this placement stage, we
assume that each product can be rotated by 90°, and assume no constraint on products’
placement such as “guillotine cut”. In Section 5.5, we first propose simple methods to
check the feasibility of a given set of products. That is, under some conditions, we could
easily find a feasible placement for a given pattern quickly or its infeasibility. In general,
however, the problem to place all the products in a stock sheet without mutual overlap is
NP-hard. In order to find a feasible placement, we use a local search algorithm for RPGSC
with the sequence pair coding scheme [90] proposed in Chapters 3 and 4. It is however
computationally too expensive if we always use the original rectangle packing algorithm,
since we must solve the problem many times. We therefore modify it to a faster heuristic
algorithm.

In Section 5.7, we generate random test instances of 2DCSP and conduct computational
experiments to compare our algorithms with various different neighborhood operations.
We also compute the trade-off curves between the number of different cutting patterns m

and the solution quality.

5.2 Problem

5.2.1 Formulation

To define the two-dimensional cutting stock problem (2DCSP), we are given a sufficient
number of stock sheets of the same width W and height H, and n types of rectangular
products I = {1,2,...,n}, where each product 7 has its width w;, height h; and demand d;.
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A cutting pattern p; is described as p; = (a1, az;, ..., an;), where a;; € Z is the number
of product 7 cut from a stock sheet by pattern p;. A placement of products in a pattern is
a set of their locations in one stock sheet together with their orientations (i.e., the original
direction or rotated by 90°), where a placement is feasible if all the products are placed in
one stock sheet without mutual overlap. We call a pattern p; feasible if it has a feasible
placement. Let S denote the set of all feasible patterns. Note that, the set S is very large
and it is not explicitly given; i.e., we must find a feasible placement to confirm that a
pattern is feasible.

A solution of 2DCSP consists of (1) a set of cutting patterns Il = {p1, p2,...,p} € S,
(2) a feasible placement of each pattern p; € II, and (3) the numbers of applications
X = (z1,29,... 7$\H|) of all the patterns p; € II, where z; € Z,. A typical cost function

is the total number of stock sheets used in a solution. This problem is formally described

as follows:
2DCSP: minimize FOLX) =) (5.2.1)
pi€ell
subject to Z a;jr; > d;, fori €1,
p; €1l
Imcs,

x; € Z4, for p; € IL.

Here we consider a variant of 2DCSP with an input parameter m, where m is the
number of different cutting patterns |II|. We call this problem the two-dimensional cutting
stock problem with a given number of different patterns m (2DCSPm), which is formally

defined as follows:

2DCSPm: minimize FALX) =) aj (5.2.2)
piell
subject to Z a;;x; > d;, fori €I,
p; €1l
Imcs,
| < m,

x; € Z4, for p; € IL

5.2.2 Lower bound

In this subsection, we consider lower bounds of the total number of stock sheets used for

2DCSP. A simple lower bound is the so-called continuous lower bound, Ly, which is defined
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as follows:

L= { Zdiwihi/wﬂ : (5.2.3)

i€l

This bound is easy to compute (it can be computed in O(n) time), and is a good bound
when there are many products of small sizes. We also introduce another lower bound Lo,
which works effective if there are many large products. This lower bound is obtained by
concentrating on large products, and is a little complicated since each product can be
rotated by 90°. We note that various lower bounds are known for the two-dimensional bin
packing problem without rotation [84].

Now for each product ¢, we define w} and A as follows:

w! = hf = min{w;, h;}  (if max{w;, h;} < min{W, H}),
wl =w;, hf =h; (if w; > H or h; > W), (5.2.4)
w = hi, b =w; (if w; > W or h; > H).

Given a constant ¢, with 0 < ¢ < H/2, we define

IV ={iel:wf>W/2},
0(¢)={iel™:hi>H—q}, (5.2.5)
LY(g)={iel" :H—-q>h}>q}

No two products i € I}"(¢) and j € {1}V (¢) UL}V (¢)} can be packed into the same stock

sheet, and at most |H/q| products in I}V (¢) can be packed into one stock sheet. Based

on this, we have the following lower bound:

d;
L;/V: max Z d; +{ i€l (@) “ . (5.2.6)

0<q<H/2 i1 (q) |H/q]
This bound can be computed in O(nlogn) time with the following algorithm.

Algorithm: Compute L)

Step 1: Divide all products into two sets I" and I \ I, For each product
i€ I, if hY < H/2, set s(i) := h; otherwise set s(i) := H — h}. Sort
rectangles ¢ € I' in the ascending order of s(i). Set L) := 0,q := 0,
IV(q) :== 0 and IV (¢q) := 1.

Step 2: Choose a rectangle i € I,V (g) with the smallest s(i). (If 5(i) = s(j)
and hj > h} hold, we choose i before j.) If hf < H/2, go to Step 3;
Otherwise go to Step 4.
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Step 3: Set ¢ := h} and compute Zz‘elf"(q) d; + [Zielg"’(q) d; / LH/qJ—| If
this is larger than L)V, set LYV := Eielf"(q) d; + {Eielg"(q) d; / LH/qJ-|
Set 1V (q) :== IV (g) \ {i}. If 1LY (q) = 0, output LY and halt; otherwise
return to Step 2.

Step 4: Set ¢:= H—h!+¢, I}V (q) := I}V (¢) U {i} and IV (q) := IV (¢) \ {i},
and compute ZZ-GI{/V((]) d; + ’VZiEI;/V(q) d; / LH/qJ-| (where ¢ is an arbi-
trarily small positive). If this is larger than LgV, set Lgv = ZZ-GIYV(q) d; +
’VZiEI;/V(q) d; / LH/qJ-| If 1)V(q) = 0, output L} and halt; otherwise
return to Step 2.

We also define I, T (g) and I/(g) in the same manner by exchanging the roles of
W and H, and another lower bound L is similarly computed. As a result, the following

lower bound L, is derived by considering large products only.
Ly =max {Ly,Li}. (5.2.7)

It is easily seen that none of the Ly and Ly dominates the other. The overall lower bound

we use in this paper is as follows,

frp = max{Ly, Ly} . (5.2.8)

5.3 Computing the number of pattern applications

In this section, we consider the problem of computing X = (x1,x9,...,2,,) for a given
set of patterns II = {pi,p2,...,pm}, where x; denotes the number of applications of
pattern p;. This problem is known to be NP-hard, and it can be described as the following

integer programming problem:

IP(1I) : minimize fX)=> (5.3.9)
p; €1l
subject to Z a;;x; > d;, fori €I,
pi€ll

xr; € Z4, for p; € 1L

There are several studies for 2DCSP that solve this problem exactly with branch-and-
bound method. However, as we must solve this problem many times in our algorithm, we

counsider a faster heuristic algorithm.
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Our heuristic algorithm first solves the LP relaxation LP(II) of IP(II), in which the

integer constraints x; € Z are replaced with z; > 0.

LP(II) : minimize f(X) = Z x; (5.3.10)
pi€ll
subject to Z a;jr; > d;, fori €1,
p; €1l

xz; > 0, for p; € IL.

Let X = (T1,T3,...,Zm) denote an optimal solution of LP(IT). Although this solution
is not integer valued, the gaps between the optimal values of IP(II) and LP(II) are observed
to be small in most instances of 2DCSPm. Our algorithm is based on this observation.
The simplest heuristic algorithm for this problem would be “rounding up”; i.e., we output
(711, %21, ., [Zm]).

In our heuristic algorithm, we do a little more than the simple rounding up. We first
set &; := |T;]| for all patterns p; € II and let X = (Z1,Z2,...,Tm). We then sort all
indices j in the descending order of T; — |T;|, and round up T; to [Z;] or round down T;
to |Z;] in the resulting order of j according to the following rule. If pattern p; includes
a product ¢ such that Zj a;;z; < d;, we set T; := Z; + 1 and go to the next pattern.
If pattern p; does not include such products, we do not change &; (i.e., rounding down)
and go to the next. The solution X obtained by this process is always feasible to IP(II)
and not worse than the solution obtained by the simple rounding up method. Note that
various rounding procedures are compared in e.g., Valdés et al. [110], Vanderbeck [111].

In our local search algorithm for finding a good set of patterns, which will be explained
in the next section, we must solve many LP(II). If LP is naively solved from scratch when-
ever we evaluate a new set of patterns, the computation becomes expensive. Therefore, as
in the study of Umetani et al. [108], we incorporate a sensitive analysis technique and the
criss-cross method [119], a variant of simplex method, to utilize an optimal LP solution
for the current set of patterns II. For each set of patterns II' € N(II), where N(II) is
the family of neighborhood sets of patterns of II, the criss-cross algorithm converges to an

optimal solution of LP(II") usually after a few pivot operations.

5.4 A local search algorithm to find a good set of patterns

In this section, we describe a local search (LS) procedure to find a good set of patterns
II = {p1,p2,-..,Pm}. It generates many sets of patterns IT' in the neighborhood N (II)
of the current set of patterns II. The numbers of applications of patterns in set II' are

computed by solving IP(IT') explained in the previous section.
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The following ingredients must be specified in designing LS: Initial solution, neighbor-
hood, move strategy and a function to evaluate solutions. In Subsection 5.4.1, we will
explain how to prepare an initial feasible solution, and in Subsection 5.4.2, we will design
several neighborhoods. As the move strategy, we adopt the first admissible move strategy
(i.e., as soon as we find a better solution in its neighborhood, we move to the solution). A
set of patterns II is evaluated by the optimal value of LP relaxation LP(II). Note that, we
also compute an integer solution X of IP(IT) heuristically by the algorithm in Section 5.3,
and update the incumbent solution accordingly (i.e., the best feasible solution among those

obtained so far).

5.4.1 Imitial solution

If there is no restriction on the number of different cutting patterns, it is easy to construct
a feasible solution. However, just finding a feasible solution is not trivial for 2DCSPm,
since it contains the two-dimensional bin packing problem as a subproblem. Hence, to
design a local search algorithm for 2DCSPm, we first consider how to construct a feasible
solution heuristically.

In order to construct a feasible solution, we ignore the demands d; of all products

1 € I, temporarily assuming them as one, and consider the following two-dimensional bin

packing problem (2DBPP) instead of 2DCSPm:

2DBPP: Find a set of patterns II, (5.4.11)
subject to Z a;; > 1, fori € 1,
p; €Il
mcs.
III| < m.

If a feasible solution II for 2DBPP is given, it is easy to construct a feasible solution for
2DCSPm by using appropriately large numbers of applications x; of cutting patterns. We
utilize a heuristic algorithm for 2DBPP which is based on the next-fit algorithm known for
the one-dimensional bin packing problem. This algorithm has some kind of randomness,
and it is possible to construct many different initial solutions. Note that, 2DBPP has been

well studied and there are more sophisticated heuristic and metaheuristic algorithms [79].

5.4.2 Neighborhoods

As an example of natural neighborhoods, let N(II) be the set of solutions obtainable by
replacing a cutting pattern p; in the set II with another cutting pattern p;- e S\II:

N(M) = {TTU{p}} \ {p;} | p; € T, pj € S\ T}, (5.4.12)
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where S is the set of all feasible cutting patterns. As mentioned in Subsection 5.2.1, the
number of all feasible cutting patterns |S| is too large, and most of them may not lead
to improvement. In view of this, we propose heuristic algorithms to generate smaller

neighborhoods.

Basic neighborhood

Let (II, X) be the current solution, where X is an optimal solution of LP(II) which may
not be integer valued. The family of sets of patterns in our reduced neighborhood of II are
those generated by changing one pattern p; € II by the following operation: Remove ¢ (t =
0,1,2) products from p; and add one product. We call this operation “basic operation”
and the neighborhood defined by basic operations is called the basic neighborhood. Note

" means one unit of product ¢z is removed from

that, “removing a product ¢ from pattern p;’
p; (i.e., a;; decreases by one). Adding a product is similarly defined. In order to decide

which products to be removed, we use the overproduction
ri= Y agz; —d; (5.4.13)
J

of product i; we sort all products in the descending order of r;, and then remove the
products in this order. This is because it is impossible to improve the current solution by
adding products ¢ satisfying r; > 0. On the other hand, in order to determine the product
to be added, we use a dual optimal solution Y = (¥,%s,...,%,) of LP(II). Larger 7,
indicates that increasing a;; in pattern p; is more effective. We sort all products satisfying
r; = 0 in the descending order of ¥;, and add a product in this order in a basic operation.

The size of this neighborhood is O(mn!*!) for a given t.

Redundancy reduction

To make the basic neighborhood more effective, we introduce other operations. For each
cutting pattern p;, products are divided into two sets. One is the set of products which
do not affect the current LP solution even if one unit of the product is removed from p;
(i.e., the set of products 4 satisfying a;; > 1 and x; < ;). The other is the set of products
which affect the LP solution if it is removed from the pattern (i.e., the set of products i
such that a;; > 1 and z; > r;). The a;; of each product 7 in the first set is reduced as much
as possible as long as the current LP solution remains the same. We call this operation as

the redundancy reduction operation, and it is applied before the basic operation.
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Filling-up operation

We explain another operation of adding products after changing pattern p; by the basic
operation. We divide all products ¢ into two sets according to whether overproduction r;
is 0 or positive. In this stage, we sort all products ¢ with r; = 0 in the descending order
of 7;, and add them one by one in this order as long as the resulting pattern is feasible.
Whenever a product is added, we recompute an optimal solution of LP and update vy,.
When we exhaust all the products with r; = 0 into pattern p;, the products with r; > 0
are added. In this stage, we sort such products in the ascending order of r;, and add them
in this order. Since products ¢ with 7; > 0 do not affect the LP solution, we can not
improve the current LP value by this operation. However, if we apply this operation, we
may find a better solution in the subsequent iterations in our local search. We call this
operation as the filling-up operation, and it is applied after the basic operation. By these

two operations, we can improve the quality of pattern p;.

Replacement operation

If all products in pattern p; are removed by the redundancy reduction and basic operations,
we must reconstruct a new pattern from scratch by the basic and filling-up operations.
This situation always occurs for pattern p; with x; = 0, and such reconstruction may not
find a pattern with small trim loss. We therefore replace p; with a new pattern in this
case. For this purpose, we keep e¢m (c is a parameter and we use ¢ = 3) good cutting
patterns obtained by then in memory, and choose one from them, where we define good

cutting pattern as those having small trim loss. We call this as the replacement operation.

Enhanced neighborhood

Now, our new neighborhood is the set of solutions obtained from II by applying the op-
erations proposed in this section (i.e., basic, redundancy reduction, filling-up and replace-
ment). We call this neighborhood as the enhanced neighborhood. Two neighborhoods,

basic and enhanced, will be computationally compared in Section 5.7.

5.5 Feasibility check for a pattern

For a given cutting pattern p;, we must check its feasibility (i.e., find a feasible placement
of the products in the stock sheet). This feasibility check is trivial for the one-dimensional

cutting stock problem, since we just check the following inequality:

Za,-jli <L, (5.5.14)
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where [; is the length of product ¢ and L is the length of a stock roll. On the other hand,
the problem is hard for the two-dimensional case; because, in general, we must solve the
two-dimensional rectangle packing problem.

In this section, we first propose two simple methods to check the feasibility of a given
two-dimensional pattern. These methods, however, work well only for some special cases.
We then propose a heuristic algorithm to find a feasible placement.

We first check a given pattern p; against the continuous lower bound,

Zaijwihi < WH. (5.5.15)

el
The pattern is obviously infeasible if this inequality is not satisfied. The second method
is used to check a pattern constructed in neighborhood search. In this case, we remove
some products from the current pattern and add some products to the resulting pattern.
A new pattern has a feasible placement if the products to be added are smaller than the
removed products. For example, if we remove two products ¢ and ¢’ from a pattern, and
then add two products, one of them is smaller than ¢ and the other is smaller than 7/,
then the resulting pattern is judged to be feasible without solving the rectangle packing
problem.

In other cases, however, we must tackle the two-dimensional rectangle packing problem,

which is NP-hard.

Rectangle Packing Problem

Input: A set of rectangles and one stock sheet, each of the rectangles and the

stock sheet having its width and height.

Output: The locations (If,}) and orientations of all rectangles k in the stock

sheet such that no two rectangles overlap each other.

There are many heuristic algorithms in the literature proposed for this problem. This
problem can be reducible to RPGSC, and basically, we use the local search algorithm for
RPGSC with the sequence pair coding scheme [90] proposed in Chapters 3 and 4. (We call
this algorithm the original rectangle packing algorithm.) It is however computationally
too expensive if we always use the original rectangle packing algorithm, since we must
solve the problem many times. We therefore modify it to a faster heuristic algorithm in
the following manner.

To construct an initial solution for the local search, we apply the original rectangle
packing algorithm for each pattern in II. In our neighborhood search, we modify a pattern
p; € 1l to another pattern p;-. Since we already have a good sequence pair o for pattern p;,

we construct a sequence pair o' for p;- starting from o. As noted in Subsection 5.4.2, we
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remove some products from pattern p; and add some other products to construct a new
pattern p;-. When a product 7 is removed, we just remove it from the current sequence
pair 0. If p; includes two or more units of product i (i.e., a;; > 2), we remove one of them
at random. When we add a new product i/, we check the insertions of i’ to all positions
of the sequence pair. The number of sequence pairs we check in this process is s2, where
s is the number of products in pattern p; (i.e., s = Y, a;j). We check all of them in O(s?)
time with the algorithm Evaluate-Shift-Moves proposed in Subsection 4.3.1. When there
is more than one product to be added, we add them one by one to the sequence pairs

generated by then.

5.6 The entire algorithm

In this section, we first describe algorithm NS((IT, X), (IT*, X*),pj, t), where NS stands for
neighborhood search, and then describe the entire framework of our local search algorithm.

Algorithm NS((IT, X), (H*,X*),pj,t) is the core routine of our algorithm, which is
comprised of those algorithms described in Sections 5.3, 5.4 and 5.5. Starting from the
current set of patterns II, this algorithm checks the family of sets of patterns generated
by modifying the pattern p; € II by the basic, redundancy reduction, filling-up and re-
placement operations, for a given parameter ¢ (= 0,1 or 2) used in the basic operation.
It also computes an integer solution for each set of patterns by the heuristic algorithm of
Section 5.3, and updates the incumbent solution (H*,X*) if a better integer solution is
obtained.

Algorithm: NS((II, X), (IT*, X*), p;, t)

Input: The current solution (IT, X ), the incumbent solution (IT*, X*), a pat-
tern p; € II which is the candidate to be removed from II, and a parameter
t=0,1or 2.

Output: An improved solution (II', X') if it exists; otherwise ‘no’, while up-

dating the incumbent solution (IT*, X*).

Step 1: If 7; = 0, go to Step 2; otherwise go to Step 3.

Step 2: Repeat the following procedure em times (where cm is the number of
good cutting patterns in memory, as described in Subsection 5.4.2), and

then go to Step 5.

(Replacement operation): Replace pattern p; with a good cutting
pattern stored in memory. Compute IP solution (IT', X’) and LP
solution (IT’, X7) for the resulting set of patterns as described
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in Section 5.3. If (II', X') is better than the incumbent solution
(IT*, X*), update it. If (I, X) is better than the current solution
(II, X), exit with (IT', X7).

Step 3 (redundancy reduction):

Remove the redundant products from p; as many as possible, by the
procedure in Subsection 5.4.2. Denote the resulting pattern as p;. If this
pattern does not have more than ¢ products, go to Step 2; otherwise go

to Step 4.

Step 4: Apply the following procedures to every subset of products I’ with

|I'l = t and every product ¢ ¢ I' with 7, = 0, as described in Subsec-
tion 5.4.2.

4-1 (basic operation):
Remove the products in I’ from p; and add the product 7. Denote
the resulting pattern as pjz and check its feasibility by the procedure
described in Section 5. If a feasible placement is found, then compute
the LP solution as described in Section 5.3, and go to 4-2.

4-2 (filling-up operation):
Fill-up the pattern pjz by the procedure in Subsection 5.4.2. Compute
IP solution (II', X') and LP solution (II', X’) for the resulting set of
patterns as described in Section 5.3. If (IT', X') is better than the
incumbent solution (IT*, X*), update it. If (I, X') is better than the
current solution (I, X), exit with (II', X7).

Step 5: Exit with ‘no’ (no improved LP solution found).

Finally, the outline of our entire local search algorithm is described as follows.

Algorithm: LS_2DCSPm

Line 1:
Line 2:
Line 3:
Line 4:
Line 5:
Line 6:
Line T7:
Line 8:
Line 9:

Construct an initial set of patterns II and compute its LP solution X;
Set, IT* := II and compute its IP solution X* (i.e., the incumbent solution);
Start the neighborhood search from the current solution (II, X);
fort=0,1,2 do
for p; € Il do
NS((I1, X), (H*,X*),t,pj) to obtain an improved solution;
if an improved solution (I, X7) is found then
set (II, X) := (II', X’) and return to Line 3;

end for
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Line 10: end for
Line 11:  Output the incumbent solution (IT*, X*) and halt;

5.7 Computational experiments

We conducted computational experiments to evaluate the proposed algorithms. The al-
gorithms were coded in the C language and run on a handmade PC (Intel Pentium IV
2.8GHz, 1GB memory).

5.7.1 Other existing algorithms

In the literature, several heuristic algorithms have been proposed for 2DCSP [18, 24, 34,
109, 110, 112] and some of their computational results have been reported. For the evalu-
ation of our algorithm, it is desirable to compare our algorithm with such computational

results. However, it is not easy for the following reasons.

First of all, there are many variations of 2DCSP and those algorithms in the literature
were designed for slightly different problems. Cung et al. [24] and Valdés et al. [109] con-
sidered the following problem, and proposed branch-and-bound and heuristic algorithms:
Cut a single rectangular stock sheet into a set of small rectangular products of given sizes
and values so as to maximize the total value. If the value of each product is equal to its
area, the objective is to minimize the trim loss. Valdés et al. considered another problem
in [110]: A set of stock sheets of different sizes and a set of rectangular products are given.
Each product has its width, height, demand and a fixed orientation. From these stock
sheets, products are cut by “guillotine cut” in order to satisfy all demands. The objective
is to minimize the total area of stock sheets required. Vanderbeck [112] proposed a heuris-
tic algorithm, based on a nested decomposition for 2DCSP with some constraints such
as 3-stage pattern and the maximum number of products in one pattern. Chauny and
Loulou [18] and Farley [34] considered a similar problem to ours, except that the number
of different cutting patterns m is not specified. In [18] and [34], heuristic algorithms based
on the column generation technique were proposed, together with some computational

results. However, their computational results are too limited to compare.

From these observation, we had to give up the comparison with other existing algo-
rithms. Instead, we generated various types of test instances, and conducted detailed ex-

periments with two different types of neighborhoods and different numbers of patterns m.
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5.7.2 Test instances

We generated random test instances of 2DCSP following the generation scheme described

in [100, 110]. The instances are characterized by the following three parameters.

Number of product types: We have four classes 20, 30, 40 and 50 of the
number of product types n (e.g., n = 20 in class 20).

Range of demands: Demand d; of type S (S stands for small) is randomly
taken from interval [1,25], type L (large) is taken from [100,200], and
type V (variable) is taken from either intervals [1,25] or [100,200] with
the equal probability for each product s.

Size of stock sheet: We have five classes «, 3,7, 6 and ¢ of the stock sheets.
Class « is the smallest stock sheet which can contain six products on the

average, while class ¢ is the largest containing about 50 products.

Hence, there are 60 types of instances and we generated one instance for each type.
These instances are named like “20S«”, “20S57, ..., “20Se”, “20La”, ..., 720Ve”,
“30Sa”, ..., “60Ve”. In our computational experiments, we apply our local search al-
gorithms ten times to each instance with different initial solutions, and report the average
results of ten trials. All test instances are electronically available from our web site

(http://www-or.amp.i.kyoto-u.ac.jp/ imahori/packing/).

5.7.3 Comparison of basic and enhanced neighborhoods

First, basic and enhanced neighborhoods were computationally compared. For each in-
stance, we applied our local search algorithm with each type of neighborhood ten times,
and report the average quality of the obtained solutions and computational time, where
local search halts only when a locally optimal solution is reached. For simplicity, we set
the number of different cutting patterns to the number of product types (i.e., m = n).
Results are shown in Table 5.1. Column “n” shows the number of product types. For
each n, we have 15 instances with different ranges of demands and different sizes of stock
sheet; e.g., we have instances 20S«, 20S83, ..., 20Ve for n = 20. Column “quality” shows

the average of the following ratio,

quality = 100 - (f — frg)/fLB, (5.7.16)

where f is the number of stock sheets used in the solution, and frp is a lower bound
of the number of required stock sheets computed by (5.2.8) in Subsection 5.2.2. The

smaller quality means the better performance of the algorithm. Column “time” shows
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Table 5.1: Comparison two neighborhoods in solution quality and computational time

basic enhanced
n quality time quality time
20 15.17  13.88 10.49  18.42
30 14.81  41.18 8.71  45.76
40 11.91 221.61 8.76  144.93
50 10.94 955.64 8.18 638.86

the average CPU time in seconds of one local search. These notations are also used in
Tables 5.2 and 5.3.

From Table 5.1, we can observe that the enhanced neighborhood gives smaller quality
value than the basic neighborhood in all cases, while using similar computational time. It
indicates that the redundancy reduction, filling-up and replacement operations proposed
in Subsection 5.4.2 make the search more powerful and efficient. Based on this, we will

use the enhanced neighborhood in the following experiments.

5.7.4 Effect of the number of patterns m

Next, we conducted computational experiments for different number of cutting patterns m,
i.e., m was set to n,0.8n,0.6n and 0.4n. Results are given in Table 5.2. (We also show the
detailed results in Table 5.3.) The leftmost column of Table 5.2 shows the instance classes.
For example, “class 20” represents 15 instances with n = 20. Each figure in this row is
the average of 150 trials (that is, 10 trials with different initial solutions for each instance,
and there are 15 instances for class 20). “class S” represents 20 instances whose demand
is taken from interval [1,25], and each figure is the average of 200 trials. Other rows can
be similarly interpreted. Now from the rows for classes 20, 30, 40 and 50 in Table 5.2,
we can observe that as n becomes larger (i.e., from class 20 to 50), computational time
increases and solution quality becomes slightly better. As m becomes smaller, the size
of neighborhood becomes smaller and local search algorithm converges to locally optimal
solutions rather quickly, making the quality of obtained solution poorer.

From the rows for different ranges of demands (i.e., S, L and V), we can observe that the
solution quality for class S is the worst even though all classes use similar computational
time. This is due to the influence of rounding and overproduction. Namely, we compute
the numbers of applications x; by rounding from the LP solution, and it introduces a little

overproduction for several product types. As the total demands is smaller for class S, the
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Table 5.2: Quality and time with various number of different patterns on various classes

m=n m = 0.8n m = 0.6n m = 0.4n

quality  time quality  time quality time  quality time

class 20 10.491 18.424  12.247 6.308  14.432 3.753  20.810 1.954
class 30 8.707 45.758 9.899 18.533 12.175 6.424 16.758 3.098
class 40 8.758 144.932 10.360 45.330 12.218 15.630 16.891 7.091
class 50 8.177 636.861 9.940 143.135 11.504 37.292 15.315 12.117
class S 12.531 149.200 14.555 47.335 16.377 15.373  20.769 6.348
class L 6.185 262.195 7.390 57.178 9.100 16.865 12.403 5.369
class V 8.384 223.087 9.890 55.467 12.269 15.086  19.158 6.478
class @  10.516 46.944 12.436 10.001  16.323 1.843 28.203 0.264
class g3 8.048 71.712  10.027 15.579 12.269 3.388  19.436 0.780
class 7.924 141.175 9.661 28.295 11.530 6.258 14.912 1.627
class 6 7.331 311.113 8.483 60.768 9.397 15.827 10.795 6.567
class ¢ 11.348 486.525 12.451 151.990 13.391 51.559  13.871 21.087
average 9.033 211.494 10.612 53.327 12.582 15.775 17.443 6.065

effect of one unit of overproduction to the quality is larger.

From the rows for different sizes of stock sheet (i.e., class «,f,v,6 and ), we can
observe that the solution qualities for classes « and £ are worse than others. The reason
for class ¢ is similar to the previous one. For many test instances of class e, we could
find good solutions if the numbers of applications x; can be fractional. However, these
solutions degrade after obtaining integer solutions. On the other hand, as the size of
stock sheet becomes smaller, it becomes harder to find a placement of products with small

unused area, since there are not enough small products to fill up the stock sheet.

5.7.5 Trade-off curves between m and solution quality

Finally, we conducted more detailed experiment to obtain the trade-off curve between m
and the quality of the obtained solutions. We used two instances 40Va and 40Vé. The
area of the stock sheet of 40V§ is four times as large as that of 40Va. Results are shown
in Figures 5.1 and 5.2. In these figures, horizontal axis is m, and vertical axis shows the
solution quality and CPU time in seconds. 40Va-LP (resp., 40V4-LP) shows the average
quality of obtained LP solutions (i.e., the numbers of applications can be fractional) for
40Va (resp., 40Vé), and 40Va-IP (resp., 40Vé-IP) shows the average quality of obtained
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Table 5.3: Quality and time with various number of different patterns on our test instances

m=n m = 0.8n m = 0.6n m = 0.4n
instance quality time quality time quality time quality time  frpT
20S« 20.000  0.059 20.204 0.043 26.276 0.032 32.908 0.018 49
20543 10.714 1.264 14.286 0.777 16.667 0.300 32.500 0.071 28
20Sy 10.500  2.710 14.000 1.752 15.500 0.624 18.500 0.238 20
20S6 9.091 10.561 10.000 5.062 9.091 2.270 10.000 1.093 11
20Se 22.000 10.650 28.000 21.647 34.000 11.542 36.000 7.213 5
20La 11.305  0.849 12.098 0.540 15.177 0.226 26.392 0.059 429
20L3 7.698 2.767 9.691 1.306 11.478 0.342 15.086 0.164 291
20Ly 7476  5.684  9.571 1.685 11.000 0.674 12.762 0.380 210
20L6 6.296 97.668 7.315 6.516 8.148 2.783 9.259 1.605 108
20Le 6.226 97.668  7.547 26.189  7.736 19.458  8.302 9.656 53
20Va 14.346 0.399 15.371 0.260 19.121 0.135 41.131 0.038 283
20V 8.490 1.124 10.885 0.585 13.333 0.315 28.646 0.080 192
20V~ 7.194 2.098 8.561 1.380 10.791 0.654 18.545 0.279 139
20Vé 7.746 8.499 7.606 5.518 9.014 2.367 12.113 1.195 71
20Ve 8.286 34.356  8.571 21.362  9.143 14.572 10.000 7.225 35
30Sa 10.606 1.374 13.030 1.469 20.152 0.435 30.152 0.254 66
30843 6.889 6.809 7.901 2.931 8.889 1.016 16.790 0.334 45
30S~y 9.375 7.229 10.313 6.506 11.875 1.901 16.250 0.665 32
3086 7.059 30.251  8.824 16.370 11.176 6.629 11.765 2.364 17
30Se 25.000 106.728 25.000 67.912 25.000 32.616 25.000 16.230 8
30La 2.108 0.065 1.295 0.050 2.215 0.039 4.073 0.018 1244
30LS3 5.783 13.063  6.821 4.320 10.178 0.864 15.488 0.236 563
30L~y 5.774 21.359 6.929 4.787 9.036 1.336 12.948 0.440 407
3016 5.000 61.168  5.625 19.060 6.971 4.460  8.558 1.535 208
30Le 5.000 184.611 5.588 42.645 6.373 18.734 6.863 8.355 102
30Va 14.150  2.501 18.518 1.105 21.942 0.372 36.279 0.082 479
30V3 12.369 5.547 13.569 4.519 17.108 0.822 28.400 0.276 325
30V~y 8.468 11.880 9.447 5.892 12.894 1.501 16.894 0.654 235
30Vé 6.250 56.867  7.833 23.923 10.000 5.217 12.250 2.618 120
30Ve 6.780 176.917 7.797 76.504 8.814 20.422 9.661 12.415 59

T frp is a lower bound of the number of required stock sheets computed by (5.2.8).



100 Local Search Algorithms for 2DCSPm

m=mn m = 0.8n m = 0.6n m = 0.4n
instance quality  time quality time  quality time quality time  frp7
40S« 10.488  16.752 13.049 6.906 15.718 1.922 34.268 0.155 82
40843 8.929  51.417 11.071 13.476 12.679  4.081 16.864 0.688 56
40S~ 11.000  73.545 13.250 33.045 14.000 6.571 15.750 1.938 40
4086 10.476 154.441 13.333 67.369 13.333 13.629 13.810 3.859 21
40Se 22.000 225.421 22.000 101.199 23.000 46.489 22.000 19.962 10
40Lo 7.896  23.414  9.388  8.288 14.301  1.969 24.524 0.213 1030
40LS 5.908 51.554  8.054 17.153 10.615 3.280 13.763 0.727 699
40L~ 5.307 120.834  7.069 24.252  8.950  4.655 12.416 1.312 505
40Lé 5.233 422.831  6.357 76.808  7.209 11.777  8.682 3.680 258
40Le 5.3564 261.454  6.142 120.999  6.378 53.848  T7.087 21.448 127
40V 8.880  20.867 11.639  4.437 16.475 1.469 31.330 0.283 366
40V 7.218  38.728  8.669 10.465 11.514 2.793 17.115 0.646 248
40V~ 7.598  77.630  8.994 28.141 11.620 4.462 15.419 1.331 179
40Vé 6.413 185.486  7.500 34.984  8.370 17.397 10.109 25.059 92
40Ve 8.667 449.603  8.889 132.436  9.111 60.110 10.222 25.059 45
50Sa 10.000 216.917 13.465 29.109 14.752  6.544 23.338 0.778 101
5055 9.565 308.406 11.739 47.813 12.609 8.750 16.232 2.039 69
505y 10.000 410.122 12.400 85.796 13.600 17.967 14.400 4.206 50
50S6 12.308 564.631 13.077 157.077 13.077 36.010 13.462 15.529 26
50Se 14.615 784.706 16.154 280.447 16.154 108.142 15.385 49.327 13
50La 7.572 168.741  9.863 37.406 13.336 4.682 21.708 0.823 1211
50L43 6.253 213.977 8382 37.713 10.061 10.830 14.002 2.499 822
50L~y 6.061 519.849  7.290 46.188  8.603 18.621 10.724 4.105 594
50Lo 5.677 1120.034  6.403 147.052  7.393 48.016  8.515 12.327 303
50Le 5.772 1856.302  6.376 520.601  6.846 130.716  6.913 37.791 149
50Va 8.843 111.389 11.316 30.402 16.413  4.289 32.327 0.451 828
50V03 6.762 165.888  9.253 45.889 12.100  7.265 18.345 1.596 562
50V~ 6.330 441.155  8.103 100.119 10.493 16.128 14.335 3.973 406
50Vé 6.425 1020.919  7.923 169.479  8.986 39.370 11.014 7.945 207
50Ve 6.471 1649.879  7.353 411.934  8.137 102.056  9.020 38.361 102
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Figure 5.1: Trade-off between m and solution quality for 40V«

IP solutions (i.e., the numbers of applications must be integer) for 40Va (resp., 40V6).
40V a-time and 40Vé-time show the average CPU times in seconds for ten trials. When m
is very small (i.e., m < 11 for 40Va and m < 2 for 40V§), we could not find initial feasible
solutions. From Figures 5.1 and 5.2, we observe that the computational time tends to
increase and the solution quality improves as m increases. For larger m, the improvement
in quality becomes tiny while the computational time is increasing steadily. Note that,
if the numbers of applications can be fractional, it is known that an optimal solution for
2DCSP uses at most n different patterns. Nevertheless, our obtained LP solutions for
these instances with m = 40 are slightly worse than those with larger m. From these
observations, there is still room for improvement in our neighborhood search. We also
observe that the gap between LP and IP solutions for 40Vé are more significant than the
gap for 40Va.

5.8 Conclusion

In this chapter, we considered the two-dimensional cutting stock problem using a given
number of different patterns m. As this is an intractable combinatorial optimization
problem, we proposed a local search algorithm, which is based on linear programming
techniques. In this algorithm, we utilized heuristic algorithms to solve three subproblems;

i.e., the problem to compute the numbers of applications for II, the two-dimensional bin
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packing problem and the rectangle packing problem.

To see the performance of our local search algorithm, we conducted some computational
experiments with randomly generated test instances of 2DCSP. We first confirmed the
effectiveness of our enhanced neighborhood, which utilized basic, redundancy reduction,

filling-up and replacement operations. We also computed the trade-off curves between m

and the quality of the obtained solution.

As a future work, we are planning to improve the solution quality by introducing

more efficient neighborhood search and by incorporating more sophisticated metaheuristic

algorithms.

computational time (s)



Chapter 6

Conclusion

Throughout this thesis, we have considered the developments of practical algorithms for
some standard problems that can include a wide range of specific variants of cutting and

packing problems. The studies in this thesis are summarized as follows.

First, in Chapters 1 and 2, we reviewed variants of cutting and packing problems
and explained basic techniques and algorithms for these problems. Cutting and packing
problems appear in many real-world applications, and there are numerous variants which
should be solved. However, it would be impossible to develop individual algorithms for all
of such problems. We hence proposed a standard problem of the rectangle packing problem
called the rectangle packing problem with general spatial costs (RPGSC). Introducing
various cost functions and defining them appropriately, many variants of rectangle packing

problem and scheduling problems can be formulated in this form.

In Chapter 3, we developed practical approximate algorithms for RPGSC. We adopted
the sequence pair representation [90] as the coding scheme in our algorithm, and proposed
two different decoding algorithms based on dynamic programming and encoding algo-
rithms based on the plane sweep technique. The first decoding algorithm CMPF was a
generalization of the existing decoding algorithms proposed in [105, 106] in that it could
deal with general spatial costs. Another decoding algorithm CBP relaxed the constraints
of a sequence pair slightly and found a packing not worse than that obtained by CMPF.
In order to find a good coded solution, we utilized metaheuristic algorithms based on
local search. For an efficient local search, we made use of the critical paths, which denote
the bottleneck of the current packing, to reduce the size of neighborhoods. From com-
putational experiments for various specific types of the rectangle packing problem and a
real-world scheduling problem, it turned out that our algorithm can handle a wide range
of problems. Furthermore, our algorithm was competitive with other existing heuristic

algorithms specially tailored to each specific problem.
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Next, in Chapter 4, we tried an enhancement of our local search algorithm for RPGSC.
In our local search algorithm for RPGSC, we must generate numerous coded solutions
(sequence pairs) and evaluate all of them. In Chapter 4, we proposed new decoding algo-
rithms, called ESM and ELSM, to evaluate all coded solutions in various neighborhoods
efficiently. In general, solutions in a neighborhood have similar structure and we made
use of it in these algorithms. The amortized computational time of a new decoding algo-
rithm ESM (resp., ELSM) per one coded solution was O(1) (resp., O(logn)), if applied
to some specific problems including area minimization, strip packing, two-dimensional
knapsack and so on. The usefulness of our decoding algorithms was then demonstrated
through computational experiments for several variants of the rectangle packing problem
and scheduling problem.

In Chapter 5, we focused on the two-dimensional cutting stock problem (2DCSP).
2DCSP is an important problem for numerous real-world applications such as the manu-
facturing industry, and many algorithms were proposed for this problem. We first proposed
a new problem called the two-dimensional cutting stock problem with a given number of
different patterns (2DCSPm) and then developed a local search algorithm for this prob-
lem. In this algorithm, we utilized heuristic algorithms to solve three subproblems; i.e.,
the problem to compute the numbers of applications for the set of cutting patterns II,
the two-dimensional bin packing problem and the rectangle packing problem. To see the
performance of our local search algorithm, we conducted computational experiments with
randomly generated test instances of 2DCSP. We first confirmed the effectiveness of our
enhanced neighborhood, which utilized basic, redundancy reduction, filling-up and re-
placement operations. We also computed the trade-off curves between m and the quality
of the obtained solution.

In recent years, as systems in real applications have become more sophisticated, prob-
lems have become more complicated than those simple local search and metaheuristic
algorithms can handle. In order to cope with these phenomena, many hybrid algorithms
have been studied; i.e., various heuristic algorithms and exact algorithms are introduced to
local search and metaheuristic algorithms, or basic principle of metaheuristic algorithms
are combined together to realize more powerful tools. However, we must take into ac-
count the fact that these hybridization of algorithms may often spoil the flexibility and
simplicity of local search and metaheuristic algorithms. In the real-world applications,
new problems are continuously arising, and it would be impossible to develop individual
algorithms for all of such problems. Therefore, we believe it is very important to develop
practical algorithms for appropriately chosen standard problems, each of which can handle
a wide range of specific problems. The author hopes that the study in this thesis will be

helpful for the developments of such useful algorithms.
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