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Abstract

We consider the computational complexity of optimizing various classes of continu-
ous functions over a simplex, hypercube or sphere. These relatively simple optimization
problems have many applications. We review known approximation results as well as
negative (inapproximability) results from the recent literature.
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1 Introduction

Consider the generic global optimization problem:

f := min {f(x) : x ∈ K} , (1)

for some continuous, computable f : K 7→ IR and compact convex set K ⊂ IRn, and let

f̄ := max {f(x) : x ∈ K} .

In this short survey we will consider the computational complexity of computing or approx-
imating f (or f̄) in the case where K is one of the following three sets:

• the standard (or unit) simplex:

∆n :=

{
x ∈ IRn :

n∑
i=1

xi = 1, x ≥ 0

}
,

• the unit hypercube [0, 1]n,

• the unit sphere: Sn := {x ∈ IRn : ‖x‖ = 1}.
Problem (1) has a surprising number of applications for these choices of K, and we only
mention a few.

For the simplex, and quadratic f , the applications include finding maximum stable sets
in graphs, portfolio optimization, testing matrix copositivity, game theory, and population
dynamics problems (see the review paper by Bomze [4] and the references therein). A recent
application is the estimation of crossing numbers in certain classes of graphs [13].

The following example is of optimization of a general non-polynomial f over the simplex,
that occurs in multivariate interpolation, and in finite element methods (see [10]).



Example 1.1 Given is a finite set of interpolation points Θ ⊂ ∆n. Denote the fundamental
Lagrange polynomial associated with an interpolation point θ ∈ Θ by lθ. In other words, for
x ∈ Θ:

lθ(x) =

{
1 if x = θ
0 else.

For a given g : IRn → IR, the associated Lagrange interpolant of g with respect to Θ is:

LΘ(g)(x) :=
∑

θ∈Θ

g(θ)lθ(x).

Note that LΘ(g) interpolates g at the points in Θ.
The associated Lebesgue constant is defined as:

Λ(Θ) := max
x∈∆n

∑

θ∈Θ

|lθ(x)| .

The Lebesgue constant is important in bounding the error of approximation, since one can
show that

‖LΘ(g)− g‖∞ ≤ (1 + Λ(Θ))‖g − p∗‖∞,

where the norm is the supremum norm on ∆n, and p∗ is the best possible polynomial approx-
imation of g of the same degree as LΘ(g).

Thus, to compute the Lebesgue constant for Θ, we should maximize f(x) =
∑

θ∈Θ |lθ(x)|
over the simplex ∆n.

For K = [0, 1]n and quadratic f , the examples include the maximum cut problem in
graphs (see below). For general f , it includes many engineering design problems where
simple upper and lower bounds on the variables are given, and no other constraints are
present. These problems are sometimes referred to as ‘box constrained global optimization
problems’.

For K = Sn (the sphere), problem (1) becomes a minimal eigenvalue problem for a
quadratic form f(x) = xT Qx, by the Raleigh-Ritz theorem. For general quadratic functions
it contains the trust region problem, that appears in many nonlinear programming algorithms
as a sub-problem. For general forms (homogeneous polynomials), it contains the classical
problem of deciding whether a given form is positive semidefinite.

2 Notions of approximation

Most of the optimization problems we will consider will be NP-hard, and we will therefore
be interested in approximating the optimal values as well as possible in polynomial time.

One has to be careful when defining the notion of an approximation to an optimal solution
of problem (1). The reason is that we usually do not know the range f̄−f of function values

on K in advance. If f̄ − f is small compared to a given ε, then it is not satisfactory to only
compute some x ∈ K with the property that f(x)− f < ε. It is therefore better to find an

x ∈ K such that f(x)− f < ε(f̄ − f), since we then know that f(x) belongs to the ε fraction
of lowest function values.

The next definition is based on this idea, and has been used by several authors, including
Ausiello, d’Atri and Protasi [1], Bellare and Rogaway [3], Bomze and De Klerk [5], De Klerk,
Parrilo and Laurent [12], Nesterov et al. [18], and Vavasis [19].



Definition 2.1 A value ψε is called a (1− ε)-approximation of f for a given ε ∈ [0, 1] if

∣∣ψε − f
∣∣ ≤ ε(f̄ − f). (2)

The approximation is called implementable if ψε = f(xε) for some xε ∈ K.

If we replace condition (2) by the condition

∣∣ψε − f
∣∣ ≤ ε, (3)

then we speak of a (1− ε)-approximation of f in the weak sense.

The following definitions are essentially from De Klerk, Laurent and Parrilo [12], and are
consistent with the corresponding definitions in combinatorial optimization.

Definition 2.2 (Polynomial time approximation algorithm) Fix ε > 0 and a class of
continuous, computable functions on K, say F . An algorithm A is called a polynomial time
(1 − ε)-approximation algorithm for problem (1) for the function class F , if the following
holds:

1. For any instance f ∈ F , A computes an xε ∈ K such that f(xε) is an implementable
(1− ε)-approximation of f ;

2. the number of operations required for the computation of xε is bounded by a polynomial
in n and in the bit size required to represent f .

If, in addition, the number of operations to compute xε is bounded by a polynomial in 1/ε,
the algorithm A is called a strongly polynomial time (1 − ε)-approximation algorithm for
problem (1) for the function class F .

For example, if f is a polynomial, the bit size required to represent f may be taken as the
sum of the bit sizes of its coefficients.

Definition 2.3 (PTAS/FPTAS) If, for a given function class F , problem (1) has a poly-
nomial time (1 − ε)-approximation algorithm for each ε ∈ (0, 1], we say that problem (1)
allows a polynomial time approximation scheme (PTAS) for the function class F .

In case of a strongly polynomial time (1− ε)-approximation algorithm for each ε ∈ (0, 1],
we speak of a fully polynomial time approximation scheme (FPTAS).

These definitions can be adapted in an obvious way for maximization problems, or if the
approximations are in the weak sense of (3).

3 Inapproximability results

We first review negative approximation results for problem (1). We will see that, in a well-
defined sense, optimization over the hypercube is much harder than over the simplex, while
the complexity of optimization over a sphere is somewhere in between.



3.1 The case of the simplex

If K = ∆n, then computing f is an NP-hard problem, already for quadratic polynomials, as
it contains the maximum stable set problem as a special case. Indeed, let G be a graph with
adjacency matrix A and let I denote the identity matrix; then the maximum size α(G) of a
stable set in G can be expressed as

1

α(G)
= min

x∈∆|V |
xT (I + A)x

by a theorem of Motzkin and Straus [14]. Moreover, this problem cannot have a FPTAS,
unless all problems in NP can be solved in randomized polynomial time; this is due to the
following inapproximability result for the maximum stable set problem by H̊astad [8].

Theorem 3.1 (H̊astad) Unless NP=ZPP, one cannot approximate α(G) to within a factor
|V |(1−ε) for any ε > 0.

Corollary 3.1 Unless P=ZPP, there is no FPTAS for problem (1) for the class of quadratic
functions and K = ∆n.

3.2 The case of the hypercube

If K = [0, 1]m and f quadratic, then problem (1) contains the maximum cut problem in
graphs as a special case. Indeed, for a graph G = (V,E) with Laplacian matrix L, the size
of the maximum cut is given by (see [7, 15]):

|maximum cut| = max
x∈[−1,1]|V |

1

4
xT Lx = max

x∈[0,1]|V |

1

4
(2x− e)T L(2x− e), (4)

where e is the all-ones vector. The maximum cut problem does not allow a PTAS, as the
following theorem shows.

Theorem 3.2 (H̊astad [9]) Unless P=NP, these is no polynomial time 16/17-approximation
algorithm for the maximum cut problem (4).

It follows that problem (1) does not allow a PTAS for any class of functions that includes
the quadratic polynomials if K = [0, 1]n.

A related negative result is due to Bellare and Rogaway [3], who proved that if P 6= NP
and ε ∈ (0, 1/3), there is no polynomial time (1 − ε)-approximation algorithm in the weak
sense for the problem of minimizing a polynomial of total degree d ≥ 2 over all sets of the
form K = {x ∈ [0, 1]n | Ax ≤ b}.

3.3 The case of the sphere

Nesterov [16] showed that maximizing a cubic form (homogeneous polynomial) on the unit
sphere is an NP-hard problem, using a reduction from the maximum stable set problem.

Theorem 3.3 (Nesterov) Consider a graph G = (V,E) with stability number α(G). One
has √

1− 1

α(G)
= 3

√
3 max
‖x‖2+‖y‖2=1

∑
i<j

{i,j}/∈E

yijxixj.



Note that this indeed involves maximizing a (square free) form of degree 3 in the variables
x and y over the unit sphere. Also note that the number of variables is polynomial in |V |,
since the x variables correspond to the vertices of G, and the y variables correspond to the
edges of the complement of G.

In view of the inapproximability result for the maximum stable set problem in Theorem
3.1, we have the following corollary.

Corollary 3.2 Unless NP=ZPP, there is no FPTAS for minimizing square free degree 3
forms over the unit sphere.

4 Approximation results

4.1 The case of the simplex

We now consider the complexity of (approximately) solving problem (1) for K = ∆n.

Easy cases

Problem (1) can be solved in polynomial time or allows a FPTAS for the following classes
of functions:

• f is concave; in this case the global minimum of f is attained at one of the n extreme
points of ∆n;

• f is convex and self-concordant with computable gradient and Hessian. In this case the
theory of interior point algorithms of Nesterov and Nemirovski [17] provides a FPTAS
for problem (1). This remains true if K is the unit hypercube or unit ball.

Results for polynomial f

Bomze and De Klerk [5] showed that, for K = ∆n and f quadratic, problem (1) allows a
PTAS. One of the PTAS algorithms that they considered is particularly simple: it evaluates
f on the regular grid

∆(n,m) := {x ∈ ∆n : mx ∈ Nn
0} ,

and returns the lowest value. In other words, it computes the value

f∆(n,m) := min
x∈∆(n,m)

f(x).

Note that |∆(n,m)| = (
n+m

m

)
which is a polynomial in n for fixed m.

Bomze and De Klerk [5] showed the following.

Theorem 4.1 (Bomze, De Klerk) Let f be quadratic. One has

f∆(n,m) − f ≤ 1

m
(f̄ − f) (5)

for any m ≥ 1.

Corollary 4.1 (Bomze, De Klerk) There exists a PTAS for minimizing quadratic poly-
nomials over the unit simplex.



This PTAS result was extended to polynomials of fixed degree by De Klerk, Laurent,
and Parrilo [12]. Earlier, related results were obtained by Faybusovich [6].

Theorem 4.2 (De Klerk, Laurent, and Parrilo [12]) Let f(x) be a form of degree d
and r ≥ 0 an integer. Then,

f∆(n,r+d) − f ≤ (1− wr(d))

(
2d− 1

d

)
dd(f̄ − f), (6)

where

wr(d) :=
(r + d)!

r!(r + d)d
=

d−1∏
i=1

(
1− i

r + d

)
. (7)

One can verify that

1−
(

d

2

)
1

r + d
≤ wr(d) ≤ 1,

which implies that limr→∞ wr(d) = 1.

Corollary 4.2 (De Klerk, Laurent, and Parrilo [12]) Fix d ∈ N. There exists a PTAS
for minimizing forms of degree d over the unit simplex.

There also exist more sophisticated (and practical) PTAS algorithms for minimizing
forms of fixed degree over the simplex that employ linear or semidefinite programming. For
example, the authors of [12] consider

f
(r)
min,LP := max λ s.t. the polynomial

(
n∑

i=1

xi

)r

f(x)− λ

(
n∑

i=1

xi

)d



has nonnegative coefficients (r = 0, 1, . . .)

Note these bounds may be computed using linear programming, and this computation may
be performed in polynomial time when r and d are fixed. Moreover, it is shown in [12] that

0 ≤ f − f
(r)
min,LP ≤

(
1

wr(d)
− 1

) (
2d− 1

d

)
dd(f̄ − f), (r = 0, 1, . . .),

where wr(d) was defined in (7). Thus the values f
(r)
min,LP also provide a PTAS, since

lim
r→∞

wr(d) = 1.

One may also define semidefinite programming (SDP) based bounds that are at least as
strong as the LP ones:

f
(r)
min,SDP := max λ s.t. the polynomial

(
n∑

i=1

x2
i

)r

f(x ◦ x)− λ

(
n∑

i=1

x2
i

)d



is a sum of squares of polynomials (r = 0, 1, . . .),

where ‘◦’ is the component-wise (Hadamard) product. Note that f ≥ f
(r)
min,SDP ≥ f

(r)
min,LP .



Results for non-polynomial f

Recently, De Klerk, Elabwabi, and Den Hertog [11] derived approximation results for (not
necessarily polynomial) functions that meet a Lipschitz condition of given order.

Once again, the underlying algorithm is simply the evaluation of f on a suitable regular
grid.

Before defining this class of functions, recall that the modulus of continuity of f on a
compact convex set K is defined by

ω(f, δ) := max
x,y∈K

‖x−y‖≤δ

|f(x)− f(y)|.

We now define the class LipL(α) of functions that meet the Lipschitz condition of given order
α > 0 with respect to a given constant L > 0:

LipL(α) := {f ∈ C(∆n) : ω(f, δ) ≤ δαL} . (8)

This condition is also called a Hölder continuity condition. (Some authors reserve the term
‘Lipschitz’ for the case α = 1.)

Theorem 4.3 (De Klerk, Elabwabi, Den Hertog) Let ε > 0, α > 0, and L > 0 be
given and assume f ∈ LipL(α) (see (8)). Moreover, assume f(x) can be computed in time
polynomial in the bit size of x and the bit size needed to represent f .

Then, for

m =

⌈(
2L

ε

) 1
2α

⌉
,

one has

f∆(n,m) − f ≤ ε,

where f∆(n,m) := minx∈∆(n,m) f(x) can be computed in polynomial time.

This theorem implies a PTAS in the weak sense for minimizing computable functions from
the class LipL(α) over ∆n, for fixed L and α.

Note that Theorem 4.3 does not imply Corollary 4.2. De Klerk, Elabwabi, and Den
Hertog [11] also identified a further class of functions that allow a PTAS. This class includes
the polynomials of fixed degree, and is defined in terms of suitable bounds on the higher
order derivatives of f . The interested reader is referred to [11] for more details.

It is still an open question to completely classify the classes of functions that allow a
PTAS.

4.2 The case of the hypercube

For the maximum cut problem there is a celebrated polynomial time 0.878-approximation
algorithm due to Goemans and Williamson [7], who suggested the following semidefinite
programming (SDP) relaxation of the maximum cut problem (4):

|maximum cut| ≤ OPT := max
X

{
1

4
trace(LX) | diag(X) = e, X º 0

}
, (9)



where e is the all-ones vector, and X º 0 means that X is a symmetric positive semidefinite
matrix.

Goemans and Williamson [7] also devised a randomized rounding scheme that uses the
optimal solution of (9) to generate cuts in the graph. Their algorithm produces a cut of
cardinality at least 0.878OPT ≥ 0.878|maximum cut|.

Related approximation results for quadratic optimization over a hypercube were given
by Nesterov [15] and Nesterov et al. [18]. In particular, the Nesterov showed the following.

Theorem 4.4 (Nesterov [15]) There exists a (randomized) polynomial time 2/π approx-
imation algorithm for the problem of maximizing a convex quadratic function over [0, 1]n.

Notice that the objective function in the maximum cut problem (4) is convex quadratic,
since the Laplacian matrix of a graph is always positive semidefinite. Thus the theorem
by Nesterov covers a larger class of problems than maximum cut, but the 2/π constant is
significantly lower than the 0.878 obtained by Goemans and Williamson.

4.3 The case of the sphere

The complexity of optimization over the sphere is still relatively poorly understood, com-
pared to the simplex or hypercube. To be more precise, there still is a big gap between
approximation and inapproximability results.

The result in Corollary 4.2 implies that there exists a PTAS for minimixing even forms
of fixed degree on the unit sphere. (Recall that a form is called even if all exponents are
even.)

Recently, Barvinok [2] has proved another partial result: one may derive a randomized
PTAS for maximizing a form on the sphere for a special class of forms called (δ,N)-focused
forms.

Definition 4.1 (Barvinok) Assume f is a form of degree d. Fix a number 0 < δ ≤ 1 and
a positive integer N > d. We say that f : IRn → IR is (δ,N)-focused if there exist N non-zero
vectors c1, . . . , cN in IRn such that

• for every pair (i, j) the cosine of the angle between ci and cj is at least δ;

• the form f can be written as a non-negative linear combination

f(x) =
∑

I⊂{1,...,N}
|I|=d

αI

∏
i∈I

cT
i x,

where the αI ’s are nonnegative scalars.

Theorem 4.5 (Barvinok) There exists an absolute constant γ > 0 with the following prop-
erty. For any δ > 0, for any positive integer N , for any (δ,N)-focused form f : IRn → IR of
degree d, for any ε > 0, and any positive integer

k ≥ γε−2δ−2 ln(N + 2),

the inequality

(1− ε)d/2 max
x∈Sn∩L

f(x) ≤
(

k

n

)d/2

f̄ ≤ (1− ε)−d/2 max
x∈Sn∩L

f(x)

holds with probability at least 2/3 for a random k-dimensional subspace L ⊂ IRn.



One may solve the problem maxx∈Sn∩L f(x) in polynomial time using techniques from com-
putational algebraic geometry, since L is of fixed dimension, and therefore the number of
variables in the resulting optimization problem is in fact fixed. Thus we obtain the following
corollary.

Corollary 4.3 (Barvinok) Fix δ > 0, N ∈ N, and d ∈ N. There exists a (randomized)
PTAS for minimizing (δ,N)-focused forms of degree d over the unit sphere.

It is still an open question whether this result can be extended to all forms of fixed degree.

5 Conclusion and discussion

Approximation algorithms have been studied extensively for combinatorial optimization
problems, but have not received the same attention for NP-hard continuous optimization
problems. Indeed, most of the results described in this survey were obtained in the last
decade.

There is also not much computational experience yet with approximation algorithms for
nonlinear programming. The only significant exception so far is for semidefinite programming
relaxations for quadratic optimization on the simplex or the hypercube.

It is therefore the hope of this author that this relatively young research area will attract
both theoretically and computationally minded researchers.
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