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Problem definition

Generic optimization problem

Let f : R
n 7→ R be a continuous function and K ⊂ R

n a compact set.
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Generic optimization problem

Let f : R
n 7→ R be a continuous function and K ⊂ R

n a compact set.

Generic optimization problems

f := min {f (x) : x ∈ K} ,
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Problem definition

Generic optimization problem

Let f : R
n 7→ R be a continuous function and K ⊂ R

n a compact set.

Generic optimization problems

f := min {f (x) : x ∈ K} , f̄ := max {f (x) : x ∈ K} .
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Problem definition

Generic optimization problem

Let f : R
n 7→ R be a continuous function and K ⊂ R

n a compact set.

Generic optimization problems

f := min {f (x) : x ∈ K} , f̄ := max {f (x) : x ∈ K} .

Assumption:

We may compute f (x) in time polynomial in the bit-size of x and in the bit size
required to represent f (x).
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Problem definition

Choices for K

We consider the generic optimization problem for three choices of the compact set
K :
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Problem definition

Choices for K

We consider the generic optimization problem for three choices of the compact set
K :

the standard (or unit) simplex:

∆n :=

{

x ∈ R
n :

n
∑

i=1

xi = 1, x ≥ 0

}

,
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Problem definition

Choices for K

We consider the generic optimization problem for three choices of the compact set
K :

the standard (or unit) simplex:

∆n :=

{

x ∈ R
n :

n
∑

i=1

xi = 1, x ≥ 0

}

,

the unit hypercube [0, 1]n,
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Problem definition

Choices for K

We consider the generic optimization problem for three choices of the compact set
K :

the standard (or unit) simplex:

∆n :=

{

x ∈ R
n :

n
∑

i=1

xi = 1, x ≥ 0

}

,

the unit hypercube [0, 1]n,

the unit sphere: Sn := {x ∈ R
n : ‖x‖ = 1}.
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Examples

Example 1 for K = ∆n: maximum stable set

Maximum stable set problem

A subset of vertices V ′ ⊂ V in a graph G = (V ,E ) is called a stable set if no two
vertices in V ′ are adjacent. The cardinality of the maximum stable set is denoted
by α(G).
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Examples

Example 1 for K = ∆n: maximum stable set

Maximum stable set problem

A subset of vertices V ′ ⊂ V in a graph G = (V ,E ) is called a stable set if no two
vertices in V ′ are adjacent. The cardinality of the maximum stable set is denoted
by α(G).

A maximum stable set of the Petersen graph
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Examples

Example 1 for K = ∆n (ctd.)

Theorem (Motzkin-Straus ’65)

1

α(G)
= min

x∈∆|V |

xT (A + I )x ,

where A the adjacency matrix of the graph G and I the identity matrix.
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Examples

Example 1 for K = ∆n (ctd.)

Theorem (Motzkin-Straus ’65)

1

α(G)
= min

x∈∆|V |

xT (A + I )x ,

where A the adjacency matrix of the graph G and I the identity matrix.

Consequence: Computing f := minx∈∆n
f (x) is NP-hard for any class of f that

contains quadratic forms.
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Examples

Example 2 for K = ∆n: computing the Lebesgue constant

Given a set of ”poised” Lagrange interpolation points Θ ⊂ ∆n.

Etienne de Klerk (Tilburg University) Complexity of optimization over a simplex, hypercube or sphere 6 / 28



Examples

Example 2 for K = ∆n: computing the Lebesgue constant

Given a set of ”poised” Lagrange interpolation points Θ ⊂ ∆n.

Denote the fundamental Lagrange polynomial associated with an interpolation
point θ ∈ Θ by ℓθ. In other words, for θ̄ ∈ Θ:

ℓθ(θ̄) =

{

1 if θ̄ = θ
0 else.
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Examples

Example 2 for K = ∆n: computing the Lebesgue constant

Given a set of ”poised” Lagrange interpolation points Θ ⊂ ∆n.

Denote the fundamental Lagrange polynomial associated with an interpolation
point θ ∈ Θ by ℓθ. In other words, for θ̄ ∈ Θ:

ℓθ(θ̄) =

{

1 if θ̄ = θ
0 else.

The Lagrange interpolant (approximation) to a function g is then

LΘ(g)(x) :=
∑

θ∈Θ

g(θ)ℓθ(x).

Etienne de Klerk (Tilburg University) Complexity of optimization over a simplex, hypercube or sphere 6 / 28



Examples

Example 2 for K = ∆n (ctd.)

Definition (Lebesgue constant of Θ)

Λ(Θ) := max
x∈∆n

∑

θ∈Θ

|ℓθ(x)| .
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Examples

Example 2 for K = ∆n (ctd.)

Definition (Lebesgue constant of Θ)

Λ(Θ) := max
x∈∆n

∑

θ∈Θ

|ℓθ(x)| .

Theorem

Let p∗
g be the best polynomial approximation to g of the same degree as LΘ(g) in

the ‖ · ‖∞ norm.
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Examples

Example 2 for K = ∆n (ctd.)

Definition (Lebesgue constant of Θ)

Λ(Θ) := max
x∈∆n

∑

θ∈Θ

|ℓθ(x)| .

Theorem

Let p∗
g be the best polynomial approximation to g of the same degree as LΘ(g) in

the ‖ · ‖∞ norm. One has

‖LΘ(g) − g‖∞ ≤ (1 + Λ(Θ))‖p∗
g − g‖∞.
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Examples

Example 2 for K = ∆n (ctd.)

Definition (Lebesgue constant of Θ)

Λ(Θ) := max
x∈∆n

∑

θ∈Θ

|ℓθ(x)| .

Theorem

Let p∗
g be the best polynomial approximation to g of the same degree as LΘ(g) in

the ‖ · ‖∞ norm. One has

‖LΘ(g) − g‖∞ ≤ (1 + Λ(Θ))‖p∗
g − g‖∞.

Computing Λ(Θ) is an example of the generic optimization problem with
f (x) =

∑

θ∈Θ |ℓθ(x)| and K = ∆n.
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Examples

Example for K = Sn (unit sphere)

Let A be a real symmetric matrix with smallest eigenvalue λmin(A).
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Examples

Example for K = Sn (unit sphere)

Let A be a real symmetric matrix with smallest eigenvalue λmin(A).

Theorem (Raleigh-Ritz)

One has
λmin(A) = min

‖x‖=1
xTAx .

Etienne de Klerk (Tilburg University) Complexity of optimization over a simplex, hypercube or sphere 8 / 28



Examples

Example for K = Sn (unit sphere)

Let A be a real symmetric matrix with smallest eigenvalue λmin(A).

Theorem (Raleigh-Ritz)

One has
λmin(A) = min

‖x‖=1
xTAx .

Conclusion: optimizing quadratic forms over K = Sn is ‘easy’ (unlike for
K = ∆n).
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Examples

Example for K = [0, 1]n: the maximum cut problem

A maximum cut is a vertex colouring using two colours such that the number of
edges with endpoints of different colours is maximal.
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Examples

Example for K = [0, 1]n: the maximum cut problem (ctd.)

For a graph G = (V ,E ) with Laplacian matrix L, the size of the maximum cut is
given by:

|maximum cut| = max
x∈[−1,1]|V |

1

4
xTLx
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Examples

Example for K = [0, 1]n: the maximum cut problem (ctd.)

For a graph G = (V ,E ) with Laplacian matrix L, the size of the maximum cut is
given by:

|maximum cut| = max
x∈[−1,1]|V |

1

4
xTLx = max

x∈[0,1]|V |

1

4
(2x − e)TL(2x − e),

where e is the all-ones vector.
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Examples

Example for K = [0, 1]n: the maximum cut problem (ctd.)

For a graph G = (V ,E ) with Laplacian matrix L, the size of the maximum cut is
given by:

|maximum cut| = max
x∈[−1,1]|V |

1

4
xTLx = max

x∈[0,1]|V |

1

4
(2x − e)TL(2x − e),

where e is the all-ones vector.

Consequence:

Optimizing quadratic polynomials over [0, 1]n is NP-hard.
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Outline

Outline of the rest of the talk

Notions of approximation for continuous optimization;
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Outline

Outline of the rest of the talk

Notions of approximation for continuous optimization;

Negative (in-approximabilily) results;
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Outline

Outline of the rest of the talk

Notions of approximation for continuous optimization;

Negative (in-approximabilily) results;

Approximation algorithms;
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Outline

Outline of the rest of the talk

Notions of approximation for continuous optimization;

Negative (in-approximabilily) results;

Approximation algorithms;

Discussion.
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Notions of approximation

ǫ-approximation

Definition ((1 − ǫ)-approximation)

A value ψǫ is called a (1 − ǫ)-approximation of f for a given ǫ ∈ [0, 1] if

|ψǫ − f | ≤ ǫ(f̄ − f ).
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Notions of approximation

ǫ-approximation

Definition ((1 − ǫ)-approximation)

A value ψǫ is called a (1 − ǫ)-approximation of f for a given ǫ ∈ [0, 1] if

|ψǫ − f | ≤ ǫ(f̄ − f ).

The approximation is called implementable if ψǫ = f (xǫ) for some xǫ ∈ K .
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Notions of approximation

ǫ-approximation

Definition ((1 − ǫ)-approximation)

A value ψǫ is called a (1 − ǫ)-approximation of f for a given ǫ ∈ [0, 1] if

|ψǫ − f | ≤ ǫ(f̄ − f ).

The approximation is called implementable if ψǫ = f (xǫ) for some xǫ ∈ K .

Definition (Weak (1 − ǫ)-approximation)

If we use the condition
|ψǫ − f | ≤ ǫ,

then we speak of a (1 − ǫ)-approximation of f in the weak sense.
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Notions of approximation

Polynomial time approximation algorithm

Definition (Polynomial time approximation algorithm)

Fix ǫ > 0 and a class of continuous, computable functions on K , say F .
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Notions of approximation

Polynomial time approximation algorithm

Definition (Polynomial time approximation algorithm)

Fix ǫ > 0 and a class of continuous, computable functions on K , say F . An
algorithm A is called a polynomial time (1− ǫ)-approximation algorithm for F , if:
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Notions of approximation

Polynomial time approximation algorithm

Definition (Polynomial time approximation algorithm)

Fix ǫ > 0 and a class of continuous, computable functions on K , say F . An
algorithm A is called a polynomial time (1− ǫ)-approximation algorithm for F , if:

1 For any f ∈ F , A computes an xǫ ∈ K such that f (xǫ) is an implementable
(1 − ǫ)-approximation of f ;

Etienne de Klerk (Tilburg University) Complexity of optimization over a simplex, hypercube or sphere 13 / 28



Notions of approximation

Polynomial time approximation algorithm

Definition (Polynomial time approximation algorithm)

Fix ǫ > 0 and a class of continuous, computable functions on K , say F . An
algorithm A is called a polynomial time (1− ǫ)-approximation algorithm for F , if:

1 For any f ∈ F , A computes an xǫ ∈ K such that f (xǫ) is an implementable
(1 − ǫ)-approximation of f ;

2 the number of operations for computing xǫ is bounded by a polynomial in:
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Notions of approximation

Polynomial time approximation algorithm

Definition (Polynomial time approximation algorithm)

Fix ǫ > 0 and a class of continuous, computable functions on K , say F . An
algorithm A is called a polynomial time (1− ǫ)-approximation algorithm for F , if:

1 For any f ∈ F , A computes an xǫ ∈ K such that f (xǫ) is an implementable
(1 − ǫ)-approximation of f ;

2 the number of operations for computing xǫ is bounded by a polynomial in:

(i) The number of variables n;
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Notions of approximation

Polynomial time approximation algorithm

Definition (Polynomial time approximation algorithm)

Fix ǫ > 0 and a class of continuous, computable functions on K , say F . An
algorithm A is called a polynomial time (1− ǫ)-approximation algorithm for F , if:

1 For any f ∈ F , A computes an xǫ ∈ K such that f (xǫ) is an implementable
(1 − ǫ)-approximation of f ;

2 the number of operations for computing xǫ is bounded by a polynomial in:

(i) The number of variables n;
(ii) the bit size required to represent f .
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Notions of approximation

Polynomial time approximation algorithm

Definition (Polynomial time approximation algorithm)

Fix ǫ > 0 and a class of continuous, computable functions on K , say F . An
algorithm A is called a polynomial time (1− ǫ)-approximation algorithm for F , if:

1 For any f ∈ F , A computes an xǫ ∈ K such that f (xǫ) is an implementable
(1 − ǫ)-approximation of f ;

2 the number of operations for computing xǫ is bounded by a polynomial in:

(i) The number of variables n;
(ii) the bit size required to represent f .

If the number of operations to compute xǫ is also bounded by a polynomial in 1/ǫ,
then A is called a strongly polynomial time (1− ǫ)-approximation algorithm for F .
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Notions of approximation

PTAS/FPTAS

Definition (PTAS/FPTAS)

If, for a given function class F , there exists a polynomial-time
(1 − ǫ)-approximation algorithm for each ǫ ∈ (0, 1], we say that there is a
polynomial time approximation scheme (PTAS) for F .
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Notions of approximation

PTAS/FPTAS

Definition (PTAS/FPTAS)

If, for a given function class F , there exists a polynomial-time
(1 − ǫ)-approximation algorithm for each ǫ ∈ (0, 1], we say that there is a
polynomial time approximation scheme (PTAS) for F .

In case of a strongly polynomial time (1 − ǫ)-approximation algorithm for
each ǫ ∈ (0, 1], we speak of a fully polynomial time approximation scheme
(FPTAS).
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Notions of approximation

PTAS/FPTAS

Definition (PTAS/FPTAS)

If, for a given function class F , there exists a polynomial-time
(1 − ǫ)-approximation algorithm for each ǫ ∈ (0, 1], we say that there is a
polynomial time approximation scheme (PTAS) for F .

In case of a strongly polynomial time (1 − ǫ)-approximation algorithm for
each ǫ ∈ (0, 1], we speak of a fully polynomial time approximation scheme
(FPTAS).

These definitions can be adapted in an obvious way for maximization problems, or
for approximations are in the weak sense.
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Negative results

Negative results for ∆n

Recall that α(G) denotes the stability number of a graph G , and

1

α(G)
= min

x∈∆|V |

xT (A + I )x ,
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Negative results

Negative results for ∆n

Recall that α(G) denotes the stability number of a graph G , and

1

α(G)
= min

x∈∆|V |

xT (A + I )x ,

Theorem (Håstad)

Unless NP=ZPP, one cannot approximate α(G) to within a factor |V |(1−ǫ) in
polynomial time for any ǫ > 0.
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Negative results

Negative results for ∆n

Recall that α(G) denotes the stability number of a graph G , and

1

α(G)
= min

x∈∆|V |

xT (A + I )x ,

Theorem (Håstad)

Unless NP=ZPP, one cannot approximate α(G) to within a factor |V |(1−ǫ) in
polynomial time for any ǫ > 0.

Corollary

Unless NP=ZPP, there is no FPTAS for optimizing the class of quadratic
functions over K = ∆n.
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Negative results

Negative results for [0, 1]n

Recall

|maximum cut| = max
x∈[−1,1]|V |

1

4
xTLx = max

x∈[0,1]|V |

1

4
(2x − e)TL(2x − e),

where L is the Laplacian matrix of a graph G .
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Negative results

Negative results for [0, 1]n

Recall

|maximum cut| = max
x∈[−1,1]|V |

1

4
xTLx = max

x∈[0,1]|V |

1

4
(2x − e)TL(2x − e),

where L is the Laplacian matrix of a graph G .

Theorem (Håstad)

Unless P=NP, these is no polynomial time 16/17-approximation algorithm for the
maximum cut problem.
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Negative results

Negative results for [0, 1]n

Recall

|maximum cut| = max
x∈[−1,1]|V |

1

4
xTLx = max

x∈[0,1]|V |

1

4
(2x − e)TL(2x − e),

where L is the Laplacian matrix of a graph G .

Theorem (Håstad)

Unless P=NP, these is no polynomial time 16/17-approximation algorithm for the
maximum cut problem.

Corollary

There is no PTAS for optimizing any class of functions that includes the quadratic
polynomials over K = [0, 1]n.
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Negative results

Negative results for the unit sphere

Theorem (Nesterov)

Consider a graph G = (V ,E ) with stability number α(G). One has

√

1 − 1

α(G)
= 3

√
3 max
‖x‖2+‖y‖2=1

∑

i<j

{i ,j}/∈E

yijxixj .
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Negative results

Negative results for the unit sphere

Theorem (Nesterov)

Consider a graph G = (V ,E ) with stability number α(G). One has

√

1 − 1

α(G)
= 3

√
3 max
‖x‖2+‖y‖2=1

∑

i<j

{i ,j}/∈E

yijxixj .

In view of the inapproximability result for the maximum stable set problem, we
have:
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Negative results

Negative results for the unit sphere

Theorem (Nesterov)

Consider a graph G = (V ,E ) with stability number α(G). One has

√

1 − 1

α(G)
= 3

√
3 max
‖x‖2+‖y‖2=1

∑

i<j

{i ,j}/∈E

yijxixj .

In view of the inapproximability result for the maximum stable set problem, we
have:

Corollary

Unless NP=ZPP, there is no FPTAS for minimizing any class of functions that
includes square free degree 3 forms over the unit sphere.
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Approximation results

Approximation results for ∆n

A simple approximation algorithm

Define the following rational grid on ∆n,

∆(n,m) := {x ∈ ∆n : mx ∈ N
n
0} ,
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Approximation results

Approximation results for ∆n

A simple approximation algorithm

Define the following rational grid on ∆n,

∆(n,m) := {x ∈ ∆n : mx ∈ N
n
0} ,

and compute the value
f∆(n,m) := min

x∈∆(n,m)
f (x).
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Approximation results

Approximation results for ∆n

A simple approximation algorithm

Define the following rational grid on ∆n,

∆(n,m) := {x ∈ ∆n : mx ∈ N
n
0} ,

and compute the value
f∆(n,m) := min

x∈∆(n,m)
f (x).

Note that |∆(n,m)| =
(

n+m

m

)

which is a polynomial in n for fixed m.
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Approximation results

Approximation results for ∆n (ctd.)

Theorem (Bomze, De Klerk)

Let f be quadratic. One has

f∆(n,m) − f ≤ 1

m
(f̄ − f )

for any m ≥ 1.
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Approximation results

Approximation results for ∆n (ctd.)

Theorem (Bomze, De Klerk)

Let f be quadratic. One has

f∆(n,m) − f ≤ 1

m
(f̄ − f )

for any m ≥ 1.

Corollary (Bomze, De Klerk)

There exists a PTAS for minimizing quadratic polynomials over the unit simplex.

Etienne de Klerk (Tilburg University) Complexity of optimization over a simplex, hypercube or sphere 19 / 28



Approximation results

Summary so far
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Approximation results

Approximation results for ∆n (ctd.)

Theorem (De Klerk, Laurent, and Parrilo )

Let f (x) be a form of degree d and r ≥ 0 an integer.
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Approximation results

Approximation results for ∆n (ctd.)

Theorem (De Klerk, Laurent, and Parrilo )

Let f (x) be a form of degree d and r ≥ 0 an integer. Then,

f∆(n,r+d) − f ≤ (1 − wr (d))

(

2d − 1

d

)

dd(f̄ − f ),

where

wr (d) :=
(r + d)!

r !(r + d)d
=

d−1
∏

i=1

(

1 − i

r + d

)

.
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Approximation results

Approximation results for ∆n (ctd.)

Theorem (De Klerk, Laurent, and Parrilo )

Let f (x) be a form of degree d and r ≥ 0 an integer. Then,

f∆(n,r+d) − f ≤ (1 − wr (d))

(

2d − 1

d

)

dd(f̄ − f ),

where

wr (d) :=
(r + d)!

r !(r + d)d
=

d−1
∏

i=1

(

1 − i

r + d

)

.

One can verify that limr→∞ wr (d) = 1.
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Approximation results

Approximation results for ∆n (ctd.)

Theorem (De Klerk, Laurent, and Parrilo )

Let f (x) be a form of degree d and r ≥ 0 an integer. Then,

f∆(n,r+d) − f ≤ (1 − wr (d))

(

2d − 1

d

)

dd(f̄ − f ),

where

wr (d) :=
(r + d)!

r !(r + d)d
=

d−1
∏

i=1

(

1 − i

r + d

)

.

One can verify that limr→∞ wr (d) = 1.

Corollary (De Klerk, Laurent, and Parrilo)

Fix d ∈ N. There exists a PTAS for minimizing forms of fixed degree d over the
unit simplex.
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Approximation results

Approximation results for ∆n (ctd.)

We now consider more general f than polynomials.

Etienne de Klerk (Tilburg University) Complexity of optimization over a simplex, hypercube or sphere 22 / 28



Approximation results
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We now consider more general f than polynomials.

Definition (Modulus of continuity)

The modulus of continuity of f on a compact convex set K is defined by

ω(f , δ) := max
x,y∈K

‖x−y‖≤δ

|f (x) − f (y)|.
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Approximation results for ∆n (ctd.)

We now consider more general f than polynomials.

Definition (Modulus of continuity)

The modulus of continuity of f on a compact convex set K is defined by

ω(f , δ) := max
x,y∈K

‖x−y‖≤δ

|f (x) − f (y)|.

Definition (Hölder continuity)

The class of Hölder continuous f :

LipL(α) := {f ∈ C (∆n) : ω(f , δ) ≤ δαL ∀ δ > 0} .
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Approximation results

Approximation results for ∆n (ctd.)
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Approximation results

Approximation results for ∆n (ctd.)

Theorem (De Klerk, Elabwabi, Den Hertog)

Let ǫ > 0, α > 0, and L > 0 be given and assume f ∈ LipL(α).

Etienne de Klerk (Tilburg University) Complexity of optimization over a simplex, hypercube or sphere 23 / 28



Approximation results

Approximation results for ∆n (ctd.)

Theorem (De Klerk, Elabwabi, Den Hertog)

Let ǫ > 0, α > 0, and L > 0 be given and assume f ∈ LipL(α). Then, for

m =

⌈

(

2L

ǫ

)
2
α

⌉

,

one has
f∆(n,m) − f ≤ ǫ.
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Approximation results

Approximation results for ∆n (ctd.)

Theorem (De Klerk, Elabwabi, Den Hertog)

Let ǫ > 0, α > 0, and L > 0 be given and assume f ∈ LipL(α). Then, for

m =

⌈

(

2L

ǫ

)
2
α

⌉

,

one has
f∆(n,m) − f ≤ ǫ.

Corollary

There is a PTAS in the weak sense for minimizing computable functions from the
class LipL(α) over ∆n, for fixed L and α.
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Approximation results

Approximation results for [0, 1]n

Theorem (Nesterov)

There exists a (randomized) polynomial time 2/π approximation algorithm for the
problem of maximizing a convex quadratic function over [0, 1]n.
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Approximation results for [0, 1]n

Theorem (Nesterov)

There exists a (randomized) polynomial time 2/π approximation algorithm for the
problem of maximizing a convex quadratic function over [0, 1]n.

Special case: maximum cut

For the special case of the maximum cut problem there is a 0.878 approximation
algorithm due to Goemans and Williamson.

Etienne de Klerk (Tilburg University) Complexity of optimization over a simplex, hypercube or sphere 24 / 28



Approximation results

Approximation results for [0, 1]n

Theorem (Nesterov)

There exists a (randomized) polynomial time 2/π approximation algorithm for the
problem of maximizing a convex quadratic function over [0, 1]n.

Special case: maximum cut

For the special case of the maximum cut problem there is a 0.878 approximation
algorithm due to Goemans and Williamson.

The underlying approximation algorithms for these problems use semidefinite
programming.
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Approximation results

Approximation results for the unit sphere

The results for ∆n imply:

Theorem (De Klerk, Laurent, Parrilo)

There is a PTAS for optimizing even forms (all exponents even) of fixed degree
over the unit sphere.
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Theorem (De Klerk, Laurent, Parrilo)

There is a PTAS for optimizing even forms (all exponents even) of fixed degree
over the unit sphere.

Another recent result:

Theorem (Barvinok)

There is a (randomized) PTAS for optimizing the class of so-called (δ,N)-focused
forms of fixed degree over the unit sphere.
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Approximation results

Approximation results for the unit sphere

The results for ∆n imply:

Theorem (De Klerk, Laurent, Parrilo)

There is a PTAS for optimizing even forms (all exponents even) of fixed degree
over the unit sphere.

Another recent result:

Theorem (Barvinok)

There is a (randomized) PTAS for optimizing the class of so-called (δ,N)-focused
forms of fixed degree over the unit sphere.

It is an open question whether there is a PTAS for all forms of fixed degree over
Sn.
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Summary and conclusion

Summary

Complexity of computing

f := min {f (x) : x ∈ K}

for the three choices of K and different classes of f .

∆n Sn [0, 1]n

f quadratic PTAS, no FPTAS in P no PTAS,
2/π-approximation

if f concave
f degree 3 PTAS no FPTAS no PTAS

f fixed degree PTAS PTAS for even no PTAS
or focused forms

f ∈ LipL(α) weak PTAS ? no PTAS
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Summary and conclusion

Conclusion/discussion

We have seen that optimization over the hypercube is much harder than over
the simplex, while the complexity of optimization over a sphere is somewhere
in between.
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problems.
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Approximation algorithms have been studied extensively for combinatorial
optimization problems, but not for NP-hard continuous optimization
problems.

Not much computational experience with approximation algorithms for
continuous optimization either.
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We have seen that optimization over the hypercube is much harder than over
the simplex, while the complexity of optimization over a sphere is somewhere
in between.

Approximation algorithms have been studied extensively for combinatorial
optimization problems, but not for NP-hard continuous optimization
problems.

Not much computational experience with approximation algorithms for
continuous optimization either.

More theoretical and computational research needed in this area!
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Summary and conclusion

Conclusion/discussion

We have seen that optimization over the hypercube is much harder than over
the simplex, while the complexity of optimization over a sphere is somewhere
in between.

Approximation algorithms have been studied extensively for combinatorial
optimization problems, but not for NP-hard continuous optimization
problems.

Not much computational experience with approximation algorithms for
continuous optimization either.

More theoretical and computational research needed in this area! Any
interest?
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