
劣モジュラ最適化の最近の進展
Recent Progress in Submodular Optimization

岩田　覚
Satoru Iwata

京都大学数理解析研究所
Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606-8502, Japan
iwata@kurims.kyoto-u.ac.jp

Abstract

Submodular functions often arise in various fields of operations research including dis-
crete optimization, game theory, queueing theory and information theory. In this
survey paper, we give overview on the fundamental properties of submodular functions
and recent algorithmic devolopments of their minimization.

Keywords: submodular function, combinatorial algorithm, discrete convexity

1 Introduction

Let V be a finite set. A set function f : 2V → R is said to be submodular if it satisfies

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y), ∀X, Y ⊆ V.

Submodular function minimization is to compute the minimum value as well as a minimizer
of a submodular function f , provided that an oracle for evaluating the function value f(X)
for X ⊆ V is available. A set fucntion f is supermodular if −f is submodular. A set function
that is both submodular and supermodular is called a modular function.

Submodular functions arise in discrete optimization [30, 53] and various other fields of
operations research such as constraint satisfaction [6, 37], game theory [57], information
theory [23], and queueing theory [14, 56]. Examples include the cut capacity functions of
networks, the rank functions of matroids, and the entropy functions of multiple information
sources. Submodular functions play important roles in statistical physics as well [1, 2].

Submodular functions are discrete analogue of convex functions. This analogy was exhib-
ited by the discrete separation theorem of Frank [20] and the Fenchel-type duality theorem
of Fujishige [24]. A more direct connection was established by Lovász [41], who clarified that
the submodularity of a set function can be characterized by the convexity of a continuous
function obtained by extending the set function in an appropriate manner. This observa-
tion together with valuated matroids invented by Dress and Wenzel [11] motivated Murota
[45, 46, 47] to develop the theory of discrete convex analysis.

The first polynomial algorithm for submodular function minimization is due to Grötschel,
Lovász, and Schrijver [28]. A strongly polynomial version was also presented by Grötschel,
Lovász, and Schrijver [29]. These algorithms employ the ellipsoid method, which was used

by Khachiyan [39] to develop the first polynomial-time algorithm for linear programming.
In spite of its polynomial time complexity, the ellipsoid method is not so efficient in practice.

Cunningham [9] developed a combinatorial strongly polynomial algorithm for solving the
membership problem for matroid polyhedra, which is a special case of submodular function
minimization. Then Cunningham [10] extended this method to compute the minimum value
of a general submodular function in pseudopolynomial time.

Recently, combinatorial strongly polynomial algorithms have been developed by Iwata,
Fleischer, and Fujishige (IFF) [35] and by Schrijver [54]. Both of these algorithms build
on works of Cunningham [9, 10]. The IFF algorithm employs a scaling scheme developed
in capacity scaling algorithms for the submodular flow problem [19, 32, 36]. In contrast,
Schrijver [54] directly achieves a strongly polynomial bound by introducing a novel subroutine
in framework of lexicographic augmentation. Subsequently, Fleischer and Iwata [17, 18] have
described a push/relabel algorithm using Schrijver’s subroutine to improve the running time
bound. Then Vygen [59] refined the complexity analysis of Schrijver’s algorithm to show
that it is as fast as the push/relabel algorithm. Combining the scaling scheme with the
push/relabel technique yields a faster combinatorial algorithm [34], which currently achieves
the best running time bound for general submodular function minimization.

All of these combinatorial algorithms perform multiplications and divisions, although the
problem of submodular function minimization does not involve these arithmetic operations.
Schrijver [54] has asked if one can minimize a submodular function in strongly polynomial
time using only additions, subtractions, comparisons, and the oracle calls for function values.
It turns out that the IFF strongly polynomial algorithm can be converted to such a fully
combinatorial algorithm [33].

This paper describes recent progress on submodular function minimization. Section 2
exhibits examples of submodular functions and related minimization problems. Section 3
is an introduction to the polyhedral approach to submodular functions. It describes the
greedy algorithm and the connection between submodularity and convexity. In Section 4,
we expound a general framework that are commonly used by the combinatorial algorithms
for submodular function minimization. In Section 5, we describe the faster scaling algorithm
developed in [34]. Then Section 6 is devoted to the strongly polynomial version. Finally,
Section 7 provides some open problems.

Other surveys on submodular function minimization have been given by Fleischer [16],
Fujishige [26], and McCormick [42]. The readers are also referred to related chapters of
Fujishige [27], Korte and Vygen [40], Murota [47], and Schrijver [55].

Throughout this paper, let RV denote the set of all the real valued functions x : V → R,
which forms a linear space of dimension n = |V |. We identify a vector x ∈ RV with a
modular function defined by x(Y) =

∑
v∈Y x(v).

2 Examples of Submodular Functions

In this section, we describe four examples of submodular functions. The first two come from
discrete mathematics, while the others are taken from queueing theory and information
theory.

Matroids

The concept of matroids was introduced by Whitney [60] as a combinatorial abstraction of
linear independence. Let V be a finite set and I be a family of subsets of V . A pair (V, I) is a
matroid if it satisfies a certain system of axioms. The rank function ρ of a matroid is defined
by ρ(X) = max{|J | | J ⊆ X, J ∈ I}. Then ρ is a monotone nondecreasing submodular
function that satisfies ρ(∅) = 0 and ρ(X) ≤ |X| for X ⊆ V . Conversely, such a set function
defines a matroid by I = {J | J ⊆ V, ρ(J) = |J |}.

The convex hull of the characteristic vectors of the independent sets in RV coincides with

MP(ρ) = {z | z ∈ R+
V , ∀X ⊆ V, z(X) ≤ ρ(X)},

which is called the matroid polyhedron. Testing if a given vector z ∈ R+
V is in MP(ρ) can

be reduced to minimizing the submodular function f(X) = ρ(X) − z(X). Cunningham [9]
presented a combinatorial strongly polynomial algorithm for this special type of submodular
function minimization.

Connected Detachment

Let G = (V,E) be a connected graph with vertex set V and edge E. Consider a function
b : V → Z+. A b-detachment of G is a new graph G′ = (W,E) obtained by splitting each
vertex v ∈ V into b(v) vertices. Each edge e ∈ E incident to v ∈ V in G should be incident in
G′ to one of the b(v) vertices that come from v. For any X ⊆ V , let e(X) denote the number
of edges incident to X. We also denote by c(G \ X) the number of connected components
in the graph obtained from G by deleting the vertices in X. Nash-Williams [49] found the
following theorem on the existence of a connected b-detachment.

Theorem 1 (Nash-Williams [49]) There exists a connected b-detachment of G = (V, E)
if and only if

b(X) ≤ e(X)− c(G \X) + 1 (1)

holds for any X ⊆ V .

Let f(X) denote the right-hand side of (1). Then we have f(∅) = 0 and f(V) = |E|+ 1.
Furthermore, it can be shown that f is a submodular function. Theorem 1 suggests that one
can check the existence of a connected b-detachment by minimizing the submodular function
f(X)− b(X).

The original proof was based on the matroid intersection theorem. Simple alternative
proofs have been given to this theorem [50, 51, 52]. The submodularity of f plays a crucial
role in the one that uses orientations [51].

Detachments with higher edge-connectivity requirements have recently been investigated
by Fleiner [15] and by Jordán and Szigeti [38]. See Frank [22, 21] for other interesting
applications of submodular functions in graph theory.

Multiclass Queueing Systems

Consider a queueing system which deals with various types of jobs. Each job of different
classes waits in different queues and the server chooses the job to serve the next by a con-
trol policy. One of the most fundamental models of this type is the so-called preemptive

M/M/1, where the arrival interval and service time of each class of jobs follow exponential
distributions and the premption is allowed in its control policy.

If the average arrival rates and the average service rates of the job classes are given,
the performance of the system depends only on the control policy. Let V be the set of job
classes. The region of performance-measuring vectors in RV achieved by all control policies
is called the achievable region. The performance of a multiclass M/M/1 is often measured
by the average staying time vector s ∈ RV . If the preemption is allowed, the performance
region of the staying time vector is explicitly given as follows.

Theorem 2 (Coffman and Mitrani [5]) For each job j ∈ V , let λj and µj be the average
arrival rates and the average service rates, respectively. Suppose that the utilization ρj =
λj/µj satisfies

∑
j∈V ρj < 1. Then the achievable region of the average staying time vector is

the set of vectors s ∈ RV that satisfy

∑

j∈X

ρjsj ≥

∑

j∈X

ρj

µj

1− ∑

j∈X

ρj

(2)

for every X ⊆ V .

The right hand side of (2) can be written as f(X) = y(X)h(x(X)), where x(j) := ρj,

y(j) :=
ρj

µj

and h(x) =
1

1− x
. If we assign z(j) := ρjsj, the problem of checking the

achievability of a given vector s is reduced to minimizing a set function f defined by

f(X) = z(X)− y(X)h(x(X)).

Since h is a monotone nondecreasing convex function, one can verify that f is a submodular
function.

A recent paper [31] presents an efficient algorithm for minimizing this type of submod-
ular functions in O(n2) time. The algorithm utilizes the topological sweeping method of
Edelsbrunner and Guibas [12] for line arrangements in the plane.

Apart from the multiclass preemptive M/M/1, submodular functions often arise in the
analysis of achievable regions of various types of multiclass queueing systems [3, 14, 56].

Entropy Functions

Let V be a set of discrete memoryless information sources (random variables). For each
nonempty subset X of V , let h(X) denote the Shannon entropy of the corresponding joint
distrubution. In addition, we assign h(∅) = 0. Then the set function h is a submodular
function, which follows from the nonnegativity of conditional mutual information.

Consider the situation that we encode data generated by this set of sources. Each source
has its encoder, which compresses each data and transmits the code to the central decoder,
which decodes all the codes it receives. We call the rate vector R ∈ RV achievable if there
exists a coding method of rate R with arbitraily small error probability. The following
theorem of Slepian and Wolf [58] suggests that one can exploit the correlation among the
sources to reduce the total rate required for the transmission. See also Cover [7] and Cover
and Thomas [8, §14.4].

Theorem 3 (Slepian and Wolf [58]) The rate vector R is achievable if and only if

R(X) > h(V)− h(V \X) (3)

holds for any nonempty X ⊆ V .

Note that the right-hand side of (3) is a supermodular function. Theorem 3 implies that
one can check if a specified rate vector R is achievable by minimizing a submodular function
R(X) − h(V) + h(V \ X). The rate vector R is achievable if and only if the empty set is
the only minimizer. The only known method to do this is to apply an algorithm for general
submodular function minimization.

Let K be a positive definite symmetric matrix whose row/column set is indexed by V .
For each X ⊆ V , let K[X] denote the principal submatrix of K indexed by X. The set
function f defined by f(∅) = 0 and f(X) = log det K[X] for nonempty X is a submodular
function. The submodularity of this function f , known as Ky Fan’s inequality, is a refinement
of Hadamard’s inequality. It can be interpreted as the submodularity of the entropy function
of a multivariate normal distribution with covariance matrix K.

3 Greedy Algorithm and Discrete Convexity

For a submodular function f with f(∅) = 0, we consider the submodular polyheron P(f)
and the base polyhedron B(f) defined by

P(f) = {x | x ∈ RV , ∀Y ⊆ V, x(Y) ≤ f(Y)},
B(f) = {x | x ∈ P(f), x(V) = f(V)}.

A vector in B(f) is called a base. In particular, an extreme point of B(f) is called an extreme
base. The base polyhedron B(f) is the set of maximal vectors in P(f).

An extreme base can be obtained by the greedy algorithm of Edmonds [13] and Shapley
[57] as follows.

Let L = (v1, · · · , vn) be a linear ordering of V . For any vj ∈ V , we denote L(vj) =
{v1, · · · , vj}. The greedy algorithm with respect to L generates an extreme base y ∈ B(f)
by

y(u) := f(L(u))− f(L(u) \ {u}). (4)

Conversely, any extreme base can be obtained in this way with an appropriate linear ordering.
Given a nonnegative vector p ∈ R+

V , consider a linear ordering L = (v1, · · · , vn) such
that p(v1) ≥ p(v2) ≥ · · · ≥ p(vn). The greedy algorithm with respect to L yields an optimal
solution to the problem of maximizing the inner product 〈p, x〉 =

∑
v∈V p(v)x(v) in B(f).

Let p1 > p2 > · · · > pk be the distinct values of p. For j = 1, . . . , k, we denote
Uj = {v | p(v) ≥ pj}. Then p can be expressed as

p =
k∑

j=1

qjχUj
,

with qj = pj − pj+1 for j = 1, . . . , k − 1 and qk = pk ≥ 0. We now define f̂(p) by

f̂(p) =
k∑

j=1

qjf(Uj).

Then the function f̂ satisfies

f̂(p) = max{〈p, x〉 | x ∈ B(f)}, (5)

which follows from the validity of the greedy algorithm.
Note that the above definition of f̂ is free from the submodularity of f . For a set function

f in general, we define f̂ in the same way. Then f̂(χX) = f(X) holds for any X ⊆ V . Hence
we may regard f̂ as an extension of f .

The restriction of f̂ to the hypercube [0, 1]V can be interpreted as follows. A linear
ordering L corresponds to the simplex whose extreme points are given by the characteristic
vectors of L(v) for v ∈ V and the empty set. Since there are n! linear orderings of V ,
the hypercube [0, 1]V can be partitioned into n! congruent simplices obtained by this way.
Determine the function values of f̂ in each simplex by the linear interpolation of the values
at the extreme points. The resulting function f̂ is a continuous function on the hypercube.

The following theorem provides a connection between submodularity and convexity.

Theorem 4 (Lovász [41]) A set function f is submodular if and only if f̂ is convex.

Proof. If f is a submodular function, then it follows from (5) that f̂ is a convex function.
Conversely, if f̂ is convex, then we have

f̂(χX + χY) ≤ f̂(χX) + f̂(χY) = f(X) + f(Y).

On the other hand, it follows from the definition of f̂ that

f̂(χX + χY) = f̂(χX∩Y) + f̂(χX∪Y) = f(X ∩ Y) + f(X ∪ Y)

holds for any X,Y ⊆ V . Thus f is a submodular function.

4 Min-Max Theorem

For any vector x ∈ RV , we denote x−(v) := min{x(v), 0}. The following min-max theorem
plays a central role in combinatorial algorithms for submodular function minimization. We
describe a proof based on the discrete convexity of submodular functions.

Theorem 5 (Edmonds [13]) For a submodular function f with f(∅) = 0, we have

min
X⊆V

f(X) = max{x−(V) | x ∈ B(f)}.

Proof. The minimum value of f̂ in the cube [0, 1]V is attained at the extreme points. Then
it follows from (5) and the linear programming duality that

min
X⊆V

f(X) = min
p∈[0,1]V

f̂(p) = min
p∈[0,1]V

max
x∈B(f)

〈p, x〉
= max

x∈B(f)
min

p∈[0,1]V
〈p, x〉 = max

x∈B(f)
x−(V)

holds.
Theorem 5 seems to provide a good characterization of the minimum value of f . In

fact, if we have a pair of W ⊆ V and x ∈ B(f) with f(W) = x−(V), then it follows from
Theorem 5 that W attains the minimum value of f . This suggests a natural way to find the

minimum by moving x ∈ B(f) so that x−(V) increases. However, it is not easy to verify
that the vector x in our hand stays in B(f). A direct way to check this by the definition
requires an exponential number of steps. On the other hand, an extreme base y of B(f) can
be verified by a linear ordering of V generating y. According to Caratheodory’s theorem,
an arbitrary point in a bounded polyhedron can be expessed as a convex combination of
its extreme points. Keeping x ∈ B(f) as a convex combination x =

∑
i∈I λiyi of extreme

bases yi, we are able to verify x ∈ B(f) efficiently, provided that I is not too large. A base
x ∈ B(f) expressed by this way provides a compact certificate of f(W) being the minimum
value if x−(V) = f(W) holds.

This approach was introduced by Cunningham [9] in the separation problem for ma-
troid polyhedra. Bixby, Cunningham, and Topkis [4] employed this approach to develop a
combinatorial algorithm for minimizing a submodular function by a finite number of steps.
Furthermore, Cunningham [10] improved this algorithm to the first combinatorial pseu-
dopolynomial algorithm for computing the minimum value of an integer valued submodular
function. In general, a pseudopolynomial algorithm runs in time polynomial in the number
of inputs and the maximum absolute value of the inputs. The running time bound of Cun-
ningham’s algorithm is O(n6γM log nM), where γ is the time required for computing the
function value and M is the maximum absolute value of f .

Since the dimension of a base polyhedron is at most n−1, it follows from Caratheodory’s
theorem that any base x ∈ B(f) can be expressed as a convex combination of at most n
extreme bases. When the set I becomes large, we are able to reduce |I| to at most n as
follows. Consider a V ×I matrix that consists of extreme bases yi for i ∈ I. Let H be a matrix
obtained by attaching a row with all components being one to this matrix. Applying the
Gaussian elimination by row transformations to H, detect a linear dependence

∑
i∈I µiyi = 0,∑

i∈I µi = 0. Compute θ = max{λi/µi | µi > 0} and update λi := λi− θµi for each i ∈ I. At
least one index i ∈ I will satisfy λi = 0, and then delete such i from I. Repeat this process
until H becomes lenearly independent. This process will be referred to as Reduce(x, I).

5 A Faster Scaling Algorithm

This section is devoted to a faster scaling algorithm developed in for minimizing an integer-
valued submodular function. This algorithm achieves the currently best running time bound
among combinatorial algorithms for submodular function minimization [34].

The algorithm consists of scaling phases with a scale parameter δ > 0. It starts with an
arbitrary linear ordering L and an extreme base x ∈ B(f) generated by L. The initial value
of δ is given by δ := min{|x−(V)|, x+(V)}/n2. In each scaling phase, the algorithm cuts the
value of δ in half. Finally, the algorithm terminates when δ < 1/n2. Since the initial value
of δ satisfies δ < M/n2, the algorithm performs O(log M) scaling phases.

The algorithm keeps a set of linear orderings {Li | i ∈ I} of the vertices in V . We denote
v ≺i u if v precedes u in Li. Each linear ordering Li generates an extreme base yi ∈ B(f) by
the greedy algorithm. The algorithm also keeps a base x ∈ B(f) as a convex combination
x =

∑
i∈I λiyi of the extreme bases. The initial setting is I = {0}, y0 = x, L0 = L, λ0 = 1.

Furthermore, the algorithm works with a flow in the complete directed graph on the
vertex set V . The flow is represented as a skew-symmetric function ϕ : V × V → R, which
satisfies ϕ(u, v) + ϕ(v, u) = 0 for each (u, v). The arc capacity is δ for each arc. Hence the
cut capacity function is given by κδ(X) = δ |X| · |V \X|. A flow ϕ is said to be feasible if

−δ ≤ ϕ(u, v) ≤ δ holds for each arc (u, v). The boundary ∂ϕ of ϕ is defined by

∂ϕ(u) =
∑

v∈V

ϕ(u, v).

Then we have ∂ϕ ∈ B(κδ). Initially, we set ϕ(u, v) = 0 for any u, v ∈ V .
Each scaling phase aims at increasing z−(V) for z = x + ∂ϕ. Given a flow ϕ, the

algorithm constructs an auxiliary directed graph Gϕ = (V, Aϕ) with arc set Aϕ = {(u, v) |
u 6= v, ϕ(u, v) ≤ 0}. Let S = {v | z(v) ≤ −δ} and T = {v | z(v) ≥ δ}. A directed path in
Gϕ from S to T is called an augmenting path.

Each scaling phase also keeps a valid labeling d. A labeling d : V → Z is valid if d(u) = 0
for u ∈ S and v ¹i u implies d(v) ≤ d(u) + 1. A valid labeling d(v) serves as a lower bound
on the number of arcs from S to v in the directed graph GI = (V, AI) with the arc set
AI = {(u, v) | ∃i ∈ I, v ¹i u}.

If there exists an augmenting path P , the algorithm augments the flow ϕ through P by δ,
namely ϕ(u, v) := ϕ(u, v) + δ and ϕ(v, u) := ϕ(v, u)− δ for each (u, v) ∈ P . This procedure
is reffered to as Augment(ϕ, P). As a result of Augment(ϕ, P), the initial vertex s of P may
get rid of S and no new vertex joins S. Thus Augment(ϕ, P) increases z−(V) by δ without
violating the validity of d.

Suppose that there is no augmenting path in Gϕ = (V, Eϕ). Let W be the set of vertices
reachable from S in Gϕ. Let Z be the set of vertices that attains the minimum labeling in
V \W . A triple (i, u, v) is called active if v is the first vertex of Z in Li and u is the last
vertex in Li with v ¹i u and d(v) = d(u) + 1. The procedure Multiple-Exchange(i, u, v) is
applicable to an active triple (i, u, v).

For an active triple (i, u, v), the set of vertices from v to u in Li is called an active
interval. The active interval is divided into Q = {w | w ∈ W, v ≺i w ¹i u} and R = {w |
w ∈ V \W, v ¹i w ≺i u}.

The procedure Multiple-Exchange(i, u, v) moves the vertices in R to the place immediately
after u in Li, without changing the ordering in Q and in R. Then it computes an extreme
base yi generated by the new Li. This results in yi(q) ≥ y◦i (q) for q ∈ Q and yi(r) ≤ y◦i (r)
for r ∈ R, where y◦i denotes the previous yi.

Consider a complete bipartite graph with the vertex sets Q and R. The algorithm
finds a flow ξ : Q × R → R+ such that

∑
r∈R ξ(q, r) = yi(q) − y◦i (q) for each q ∈ Q

and
∑

q∈Q ξ(q, r) = y◦i (r) − yi(r) for each r ∈ R. Such a flow can be obtained easily by
the so-called northwest corner rule. Then the procedure computes α = min{λi, δ/β} with
β = max{ξ(q, r) | q ∈ Q, r ∈ R}, and moves x to x := x + α(yi − y◦i). In order to
keep z invariant, the procedure adjusts the flow ϕ by ϕ(q, r) := ϕ(q, r) − αξ(q, r) and
ϕ(r, q) := ϕ(r, q) + αξ(q, r) for every (q, r) ∈ Q × R. The resulting ϕ satisfies the capacity
constraints due to the choice of α, and the vertices in W remain reachable from S in Gϕ.

If α < λi, a new index k is added to I. The associated linear ordering Lk is the previous
Li. The coefficient λk is determined by λk := λi − α, and then λi is replaced by λi := α.
Thus the algorithm continues to keep x as a convex combination x =

∑
i∈I λiyi.

Each scaling phase begins with setting d(v) = 0 for each v ∈ V . If there exists an
augmenting path P in Gϕ, then the algorithm performs Augment(x, P) and Reduce(x, I).
Otherwise, the algorithm computes ` = min{d(v) | v ∈ V \W}. If ` < n, then the algorithm
applies Multiple-Exchange(i, u, v) to an active triple (i, u, v). If there is no active triple, it
applies Relabel(v), which increases d(v) by one, to each v ∈ Z. Finally, if ` = n, there is no
directed path from S to V \W in GI . Then the set X of vertices reachable from S in GI

satisfies x(X) = f(X), which gives the end of the current scaling phase. The algorithm goes
to the next scaling phase by cutting the value of δ in half.

The resulting scaling algorithm is now described as follows.

Step 0: Let L0 be an arbitrary linear ordering. Compute an extreme base y0 by the greedy
algorithm with respect to L0. Put x := y0, λ0 := 1, I := {0}, and δ := |x−(V)|/n2.

Step 1: Put d(v) := 0 for v ∈ V , and ϕ(u, v) := 0 for u, v ∈ V .

Step 2: Put S := {v | z(v) ≤ −δ} and T := {v | z(v) ≥ δ}, where z = x + ∂ϕ. Let W be
the set of vertices reachable from S in Gϕ.

Step 3: If there is an augmenting path P , then do the following.

(3-1) Apply Augment(ϕ, P).

(3-2) Apply Reduce(x, I).

(3-3) Go to Step 2.

Step 4: Compute ` := min{d(v) | v ∈ V \W} and put Z := {v ∈ v ∈ V \W,d(v) = `}. If
` < n, then do the following.

(4-1) If there is an active triple (i, u, v), then apply Multiple-Exchange(i, u, v).

(4-2) Otherwise, apply Relabel(v) for each v ∈ Z.

(4-3) Go to Step 2.

Step 5: Determine the set X of vertices reacheble from S in GI . If δ ≥ 1/n2, then apply
Reduce(x, I), δ := δ/2, and go to Step 1.

The number of applications of Augment and Relabel are both O(n2) in each scaling
phase. The total number of function evaluations is O(n2) in consecutive applications of
Multiple-Exchange between Relabel or Augment. Thus each scaling phase takes O(n4γ + n5)
time. Since the algorithm performs O(log M) scaling phases, the total running time bound
is O((n4γ + n5) log M).

Finally, at the end of the last scaling phase with δ < 1/n2, we have x−(V) ≥ f(X)−n2δ >
f(X)−1 for the subset X obtained in Step 5. Since x−(V) ≤ f(Y) for any Y ⊆ V , it follows
from the integrality of f that X is a minimizer of f .

6 A Strongly Polynomial Scaling Algorithm

This section describes a strongly polynomial scaling algorithm for minimizing a real-valued
submodular function developed in [35]. The algorithm keeps a directed acyclic graph D =
(U, F) and a subset Z ⊆ V . It starts with U = V , F = ∅, Z = ∅. The set Z represents the
set of elements that turns out to be contained in any minimizer of f . The vertex set U of
the directed acyclic graph D corresponds to the partition of V \ Z. For a subset Y ⊆ U ,
we denote by Γ(Y) the union of the subsets of V represented by the vertices in U . An edge
(u, v) reflects an implication that any minimizer that includes Γ({u}) must include Γ({v})
as well.

A submodular function f̃ : 2U → R is defined by

f̃(Y) =

{
f(Γ(Y) ∪ Z)−min{f(V), f(Z)} (∅ 6= Y ⊂ U)
0 (Y = ∅, U)

Then a minimizer of X of f can be represented as X = Γ(Y) ∪ Z by a minimizer Y of f̃ .
For each vertex u ∈ U , we denote by R(u) the set of vertices reachable from u in D. At

the start of each iteration, the algorithm computes

η = max{f̃(R(u))− f̃(R(u) \ {u}) | u ∈ U} (6)

If η ≤ 0, then it turns out that either V or Z is a minimizer of f .
On the other hand, if η > 0, then the vertex u ∈ U that attains the maximum in the

right-hand side must satisfy either f̃(R(u) \ {u}) ≤ −η/2 or f̃(R(u)) > η/2. In the former
case, apply Fix(f̃ , η) described below to detect a vertex w ∈ R(u) that is contained in every
minimizer of f̃ . Then the algorithm deletes w from U and adds Γ({w}) to Z. In the latter
case, define a submodular function f̃u by

f̃u(Y) = f̃(Y ∪R(u))− f̃(R(u)) (Y ⊆ U \R(u))

and apply Fix(f̃u, η) to find a vertex w ∈ U \R(u) contained in every minimizer of f̃u. Then
the algorithm adds (u,w) to F . If the resulting graph contains a directed cycle, then the
algorithm shrinks it to a new vertex.

The procedure Fix(f̃ , η) is applicable to a submodular function f̃ such that f̃(Y) ≤ −η/2
for some Y . It performs the scaling algorithm with the arc set of Gϕ replaced by Eϕ ∪ F . If
x(w) < −m2η holds for m = |U | at the end of a scaling phase, w must be contained in every
minimizer of f̃ . The existence of Y with f̃(Y) ≤ −η/2 ensures that such a vertex w must
be found within O(log n) scaling phases.

Empolying the faster scaling algorithm in Fix, this algorithm runs in O((n6γ + n7) log n)
time, which is currently the best strongly polynomial bound among combinatorial algorithms.
Applying the technique in [33], one can implement this algorithm in a fully combinatorial
manner. A straightforward implementation would result in an O((n8γ+n9) log2 n) algorithm.
McCormick [42] has suggested a more careful implementation to achieve an O(n8γ log2 n)
bound.

An advantage of a fully combinatorial algorithm from theoretical point of view is not
only aesthetic. Suppose we are given a vector z ∈ P(f) and a direction vector a ∈ RV . Then
what is the maximum t ∈ R such that ta+z ∈ P(f)? A recent paper of Nagano [48] presents
the first strongly polynomial algorithm for solving this problem. The algorithm is based on
the parametric search technique of Megiddo [43, 44], which requires a fully combinatorial
subroutine for submodular function minimization.

7 Conclusion

We now conclude this paper by mentioning some open problems concerning submodular
function minimization.

1. An obvious one is of course to improve theoretical efficiency of submodular function
minimization. In particular, the current stronly polynomial bound is far from being
satisfactory.

2. Fujishige [25] showed a connection between submodular funtion minimization and the
minimum Euclidean norm point in the base polyhedron. A practical algorithm to solve
the minimization problem based on this result is presented in Fujishige [27, §7.1 (a)].
It remains open to analyse the complexity of this algorithm.

3. What is the lower bound on the number of oracle calls for function evaluation required
before determining the minimum value?

References

[1] J.-C. Anglès d’Auriac: Computing the Potts free energy and submodular functions. In
A. K. Hartmann and H. Rieger (eds.), New Optimization Algorithms in Physics (Wiley,
2004), 101–117.

[2] J.-C. Anglès d’Auriac, F. Iglói, M. Preissmann, and A. Sebő: Optimal cooperation and
submodularity for computing Potts’ partition functions with a large number of states,
Journal of Physics, Ser. A, 35 (2002), 6973–6983.

[3] D. Bertsimas and J. Niño-Mora: Conservation laws, extended polymatroids and multi-
armed bandit problems; a polyhedral approach to indexable systems, Mathematics of
Operations Research, 21 (1996), 257–306.

[4] R. E. Bixby, W. H. Cunningham, and D. M. Topkis: Partial order of a polymatroid
extreme point, Mathematics of Operations Research, 10 (1985), 367–378.

[5] E. G. Coffman, Jr., and I. Mitrani: A characterization of waiting time performance
realizable by single-server queues, Operations Research, 28 (1980), 810–821.

[6] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin: Supermodular functions and the
complexity of Max CSP, Discrete Applied Mathematics, 149 (2005), 53–72.

[7] T. M. Cover: A proof of the data compression theorem of Slepian and Wolf for ergodic
sources, IEEE Transactions on Information Theory, IT21 (1975), 226–228.

[8] T. M. Cover and J. A. Thomas: Elements of Information Theory (Wiley, 1991).

[9] W. H. Cunningham: Testing membership in matroid polyhedra, Journal of Combina-
torial Theory, Ser. B, 36 (1984), 161–188.

[10] W. H. Cunningham: On submodular function minimization, Combinatorica, 5 (1985),
185–192.

[11] A. W. M. Dress and W. Wenzel: Valuated matroids, Advances in Mathematics, 93
(1992), 214–250.

[12] H. Edelsbrunner and L. J. Guibas: Topologically sweeping an arrangement, Journal of
Computer and System Sciences, 38 (1989), 165–194.

[13] J. Edmonds: Submodular functions, matroids, and certain polyhedra. In R. Guy,
H. Hanani, N. Sauer, and J. Schönheim (eds.), Combinatorial Structures and Their
Applications, (Gordon and Breach, 1970), 69–87.

[14] A. Federgruen and H. Groenevelt: Characterization and optimization of achievable
performance in general queueing systems, Operations Research, 36 (1988), 733–741.

[15] B. Fleiner: Detachment of vertices of graphs preserving edge-connectivity, SIAM Journal
on Discrete Mathematics, 18 (2005), 581–591.

[16] L. Fleischer: Recent progress in submodular function minimization, OPTIMA, 64
(2000), 1–11.

[17] L. Fleischer and S. Iwata: Improved algorithms for submodular function minimization
and submodular flow, Proceedings of the 32nd ACM Symposium on Theory of Com-
puting (2000), 107–116.

[18] L. Fleischer and S. Iwata: A push-relabel framework for submodular function minimiza-
tion and applications to parametric optimization, Discrete Applied Mathematics, 131
(2003), 311–322.

[19] L. Fleischer, S. Iwata, and S. T. McCormick: A faster capacity scaling algorithm for
minimum cost submodular flow, Math. Programming, 92 (2002), 119–139.

[20] A. Frank: An algorithm for submodular functions on graphs, Annals of Discrete Math-
ematics, 16 (1982), 97–120.

[21] A. Frank: Submodular functions in graph theory, Discrete Mathematics, 111 (1993),
231–241.

[22] A. Frank: Applications of submodular functions. In K. Walker (ed.), Surveys in Com-
binatorics (Cambridge University Press, 1993), 85–136.

[23] S. Fujishige: Polymatroidal dependence structure of a set of random variables, Infor-
mation and Control, 39 (1978), 55–72.

[24] S. Fujishige: Theory of submodular programs — A Fenchel-type min-max theorem and
subgradients of submodular functions, Mathematical Programming, 29 (1984), 142–155.

[25] S. Fujishige: Submodular systems and related topics, Mathematical Programming
Study, 22 (1984), 113–131.

[26] S. Fujishige: Submodular function minimization and related topics, Optimization Meth-
ods and Software, 18 (2003), 169–180.

[27] S. Fujishige: Submodular Functions and Optimization (North-Holland, 2005).

[28] M. Grötschel, L. Lovász, and A. Schrijver: The ellipsoid method and its consequences
in combinatorial optimization, Combinatorica, 1 (1981), 169–197.

[29] Grötschel, M., L. Lovász, and A. Schrijver: Geometric Algorithms and Combinatorial
Optimization (Springer-Verlag, 1988).

[30] B. Hoppe and É. Tardos: The quickest transshipment problem, Mathematics of Oper-
ations Research, 25 (2000), 36–62.

[31] T. Itoko and S. Iwata: Computational geometric approach to submodular function min-
imization for multiclass queueing systems. Technical Report METR 2005-29, University
of Tokyo, October 2005.

[32] S. Iwata: A capacity scaling algorithm for convex cost submodular flows, Mathematical
Programming, 76 (1997), 299–308.

[33] S. Iwata: A fully combinatorial algorithm for submodular function minimization. Jour-
nal of Combinatorial Theory, Ser. B, 84 (2002), 203–212.

[34] S. Iwata: A faster scaling algorithm for minimizing submodular functions. SIAM Journal
on Computing, 32 (2003), 833–840.

[35] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algorithm
for minimizing submodular functions, Journal of the ACM, 48 (2001), 761–777.

[36] S. Iwata, S. T. McCormick, and M. Shigeno: A strongly polynomial cut canceling
algorithm for minimum cost submodular flow, SIAM Journal on Discrete Mathematics,
19 (2005), 304–320.

[37] P. Jonsson, M. Klasson, and A. Krokhin: The approximability of three-valued Max
CSP, SIAM Journal on Computing, 35 (2006), pp. 1329–1349.

[38] T. Jordán and Z. Szigeti: Detachments preserving local edge-connectivity of graphs,
SIAM Journal on Discrete Mathematics, 17 (2003), 72–87.

[39] L. G. Khachiyan: A polynomail algorithm in linear programming, Soviet Mathamatics
Doklady, 20 (1979), 191–194.

[40] B. Korte and J. Vygen: Combinatorial Optimization — Theory and Algorithms
(Springer-Verlag, 2000).

[41] L. Lovász: Submodular functions and convexity. In A. Bachem, M. Grötschel and B. Ko-
rte (eds.), Mathematical Programming — The State of the Art (Springer-Verlag, 1983),
235–257.

[42] S. T. McCormick: Submodular function minimization. In K. Aardal, G. Nemhauser,
and R. Weismantel (eds.), Discrete Optimization (Handbooks in Operations Research,
Vol. 12, Elsevier, 2005).

[43] N. Megiddo: Combinatorial optimization with rational objective functions, Mathematics
of Operations Research, 4 (1979), 414–424.

[44] N. Megiddo: Applying parallel computation algorithms in the design of serial algo-
rithms, Journal of the ACM, 30 (1983), 852–865.

[45] K. Murota: Convexity and Steinitz’s exchange property, Advances in Mathematics, 124
(1996), 272–311.

[46] K. Murota: Discrete convex analysis, Mathematical Programming, 83 (1998), 313–371.

[47] K. Murota: Discrete Convex Analysis (SIAM, 2003).

[48] K. Nagano: A strongly polynomial algorithm for line search in submodular polyhedra.
Technical Report METR 2004-33, University of Tokyo, June 2004.

[49] Connected detachments of graphs and generalized Euler trails, Journal of the London
Mathematical Society, 31 (1985), 17–29.

[50] C. St. J. A. Nash-Williams: Another proof of a theorem concerning detachments of
graphs, European Journal of Combinatorics, 12 (1991), 245–247

[51] C. St. J. A. Nash-Williams: Strongly connected mixed graphs and connected detach-
ments of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing,
19 (1995), pp. 33–47.

[52] C. St. J. A. Nash-Williams: A direct proof of a theorem on detachments of finite
graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 19
(1995), pp. 314–318.

[53] M. Queyranne: Structure of a simple scheduling polyhedra, Mathematical Program-
ming, 58 (1993), 263–285.

[54] A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Ser. B, 80 (2000), 346–355.

[55] A. Schrijver: Combinatorial Optimization — Polyhedra and Efficiency (Springer-Verlag,
2003).

[56] J. G. Shanthikumar and D. D. Yao: Multiclass queueing systems: polymatroidal struc-
ture and optimal scheduling control. Operations Research, 40 (1992), S293–S299.

[57] L. S. Shapley: Cores of convex games, International Journal of Game Theory, 1 (1971),
11–26.

[58] D. Slepian and J. K. Wolf: Noiseless coding with of correlated information sources,
IEEE Transactions on Information Theory, IT19 (1973), 471–480.

[59] J. Vygen: A note on Schrijver’s submodular function minimization algorithm, Journal
of Combinatorial Theory, Ser. B, 88 (2003), 399–402.

[60] H. Whitney: On the abstract properties of linear dependence, American Journal of
Mathematics, 57 (1935), 509–533.

